УДК 621.43

А.П. Марченко, д-р техн. наук

ТЕРМОДИНАМИЧЕСКАЯ ОЦЕНКА РЕЗЕРВОВ ПОВЫШЕНИЯ КПД ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ

На протяжении почти полувековой истории двигателей внутреннего сгорания повышение коэффициента полезного действия является доминирующей тенденцией их совершенствования. К сегодняшнему дню усилиями многих поколений ученых и практиков индикаторный КПД (η_i) ДВС вырос практически в 10 раз от примерно 5% у двигателя Ленуара до 45...50% у большинства современных дизелей. Каждый из этих процентов роста η_i достигнут благодаря серьезным интеллектуальным усилиям и финансовым затратам.

С другой стороны, на всех исторических этапах развития ДВС, в том числе и сегодня, звучат предложения по такому изменению конструкции и рабочего процесса, которое обеспечит рост η_i от достигнутого уровня на 10...20%, а то и на более значительную величину. В этой связи примером может служить статья [1], автор которой предлагает новый способ работы теплового двигателя. В статье для дизеля Д70 (16ЧН25/27) обосновывается возможность увеличения η_i от 46,6% до 73,2%. При этом автор статьи обращает внимание читателей на тот факт, что новое значение η_i на 5,5% выше термического КПД цикла Тринклера-Сабатэ и на 2,2% выше КПД цикла Карно, вычисленных по параметрам дизеля Д70. К сожалению, подобные предположения по достижению $\eta_i = 70...80\%$ не являются единичными. Они постоянно звучат на различных научных семинарах, конференциях и конгрессах, посвященных проблемам двигателестроения. Именно эти обстоятельства и побудили автора к очередному ежегодному IX Конгрессу двигателестроителей приурочить данную статью. По замыслу статья должна ответить на вопрос о максимально возможном теоретическом коэффициенте полезного действия теплового двигателя (η_{max}), разница между которым и индикаторным

КПД определяет максимальные теоретические резервы повышения η_i .

Вопрос относительно η_{max} не является новым. Часто η_{мах} определяют как КПД цикла Карно, реализованного в диапазоне максимальной и минимальной температур реального цикла теплового двигателя. В связи с этим возник термин «карнотизация циклов», под которым подразумевают совершенствование действительных циклов с целью повышения их термодинамической эффективности. Причем, одни исследователи [2] карнотизацию понимают как приближение действительного цикла к прямоугольному в Т-ѕ координатах. Другие же [3] отстаивают противоположную точку зрения: карнотизация - это не приближение действительного цикла к двум изотермам и двум адиабатам. Это методология повышения КПД теплового двигателя за счет приближения средних температур на участке теплоподвода к максимальным и средних температур на участке теплоотвода – к минимальным, что, очевидно, для анализа циклов поршневых ДВС является более предпочтительным. Воспользуемся этим подходом.

Рассмотрим именной цикл Тринклера-Сабатэ (рис. 1) и модернизируем его таким образом, чтобы значение работы было максимально возможным (впервые такие модернизированные циклы были исследованы лет 15 назад и результаты исследования представлены в [4, 5]).

От традиционного модернизированный цикл отличается тем, что адиабата расширения 4-5 продлена до точки 7, которая одновременно соответствует изотерме 1-7. Теплота Q_1 , как и в цикле Тринклера-Сабатэ, подводится в изохорном и изобарном процессах на участках 2-3 и 3-4. Отвод же теплоты Q_2 осуществляется в изотермическом процессе 7-1 при минимально возможной температуре, равной температуре окружающей среды T_0 .

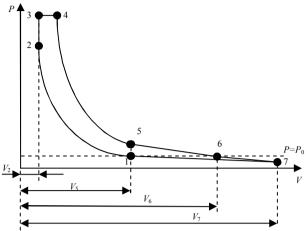


Рис. 1. Модернизированный цикл Тринклера-Сабатэ

Для представленных на рис.1 циклов Тринклера-Сабатэ, а также новых с отводом теплоты Q_2 по изобаре 6-1 (цикл 1-2-3-4-5-6-1) и изотерме 7-1 (цикл 1-2-3-4-5-6-7-1) выполним расчетные исследования, исходные данные и результаты которого представлены в табл.1—табл.3.

Таблица 1. Исходные данные

гаолица т. исходные данные	
Наименование параметра	Значение параметра
Диаметр цилиндра теплового двигателя, м	0,12
Ход поршня для традиционного теплового двигателя, м	0,14
Показатель адиабаты	1,4
Мольные теплоемкости, кДж/(кмоль·К) mC_V mC_p	20,785 29,099
Температура окружающей среды, К Давление окружающей среды, МПа	300 0,1
Степень сжатия $\varepsilon = \frac{V_1}{V_2}$	18
Степень повышения давления при сгорании $\lambda = \frac{p_3}{p_2}$	1,8
Степень предварительного расширения $\rho = \frac{V_4}{V_3}$	1,2

Таблица 2. Параметры рабочего тела в характерных точках цикла

10 IKuA HIRGI					
Точка цикла	Т, К	<i>p</i> , МПа	<i>V</i> , м ³		
1	300	0,1	1,667·10 ⁻³		
2	953,3	5,72	$9,314 \cdot 10^{-5}$		
3	1715,9	10,3	$9,314 \cdot 10^{-5}$		
4	2059	10,3	$1,118 \cdot 10^{-4}$		
5	697	$2,324 \cdot 10^{-1}$	$1,667 \cdot 10^{-3}$		
6	547,9	0,1	$3,062 \cdot 10^{-3}$		
7	300	$1,215\cdot 10^{-2}$	$1,38 \cdot 10^{-2}$		

 Таблица
 3. Энергетические параметры процессов модернизированного цикла

жедеринен резишен е дини						
Про- цесс	Теплота, кДж	Эксергия теплоты, кДж	Анергия теплоты, кДж	Работа, кДж		
1-2 2-3 3-4	0,0 1,065 6,713·10	0,0 8,191·10 ⁻¹ 5,643·10 ⁻¹	0,0 2,464·10 ⁻¹ 1,07·10 ⁻¹	9,127·10 ⁻¹ 0,0 1,918·10 ⁻¹		
2-3-4 4-5 4-6 4-7 5-1	1,737 0,0 0,0 0,0 5,548·10	1,3834 0,0 0,0 0,0 0,0 2,015·10 ⁻¹	$ 3,534 \cdot 10^{-1} \\ 0,0 \\ 0,0 \\ 0,0 \\ 3,534 \cdot 10^{-1} $	1,918·10 ⁻¹ 1,903 2,111 2,458 0,0		
6-1	4,848·10	1,315·10 ⁻¹	3,534·10 ⁻¹	1,383·10 ⁻¹		
7-1	3,534.10	0,0	3,534·10 ⁻¹	3,534·10 ⁻¹		

В случае продления адиабаты расширения 4-5 только до точки 6, соответствующей изобаре с давлением окружающей среды p_0 , получим цикл 1-2-3-4-5-6-1 с отводом теплоты Q_2 в изобарном процессе на участке 6-1. В этом случае отвод теплоты будет осуществлен при температуре более высокой, чем окружающая среда, что, естественно, отразится как на значении КПД цикла 1-2-3-4-5-6-1, так и на величине полезной работы.

Данные табл. 3 позволяют определить работу и КПД исследуемых циклов. Так, для цикла 1-2-3-4-5-1

$$L_{tv} = L_{4-5} + L_{3-4} - L_{1-2} = 1,182 \text{ кДж},$$

$$\eta_{tv} = \frac{L_{tv}}{Q_1} \cdot 100\% = 68,1\%,$$

для цикла 1-2-3-4-5-6-1

$$L_{tp} = L_{4-6} + L_{3-4} - L_{1-2} - L_{6-1} = 1,252 \text{ кДж},$$

$$\eta_{tp} = \frac{L_{tp}}{Q_1} \cdot 100\% = 72,1\%,$$

и, наконец, для цикла 1-2-3-4-5-6-7-1

$$L_{tt} = L_{4-7} + L_{3-4} - L_{1-2} - L_{7-1} = 1,383 \text{ кДж},$$
 $\eta_{tt} = \frac{L_{tt}}{Q_1} \cdot 100\% = 79,7\%.$

В соответствии с теорией, теплота может быть представлена в виде суммы

$$Q = E_Q + A_Q$$

где $E_{\mathcal{Q}}$ – эксергия теплоты, равная максимально возможной работе при переходе рабочего тела в об-

ратимом процессе из заданного состояния до состояния равновесия с окружающей средой;

 $A_{\mathcal{Q}}$ — анергия теплоты, которая определяет ее неработоспособную часть.

Данные табл. 2 позволяют вычислить эксергию и анергию теплоты на участке ее подвода и отвода, значения которых приведено в табл.3.

В расчетном исследовании получили, что работа модернизированного теоретического цикла 1-2-3-4-5-6-7-1 численно равна эксергии теплоты Q_1 , а следовательно, она является максимально возможной $(L_{tt}=L_{\max})$ для принятых начальных условий. При этом теплота Q_2 численно равна анергии подведенной теплоты A_{Q_1} . Следовательно, внешние потери работоспособной энергии в рассматриваемом цикле отсутствуют. Отсутствуют и внутренние потери эксергии, что и определяет равенство $L_{tt}=L_{\max}=E_{Q_1}$.

В общем случае

$$L_{t} = E_{Q_{1}} - \sum_{i=1}^{n} \Delta E_{i} - \sum_{j=1}^{k} D_{j} ,$$

где $\sum_{i=1}^{n} \Delta E_i$ – сумма внешних потерь эксергии;

$$\sum_{j=1}^k D_j$$
 — сумма внутренних потерь эксергии.

Чем больше величина отмеченных выше потерь, тем больше разница между величинами L_{\max} и L_i .

Максимально возможным для принятых условий цикла 1-2-3-4-5-6-7-1 является и теоретический КПД ($\eta_{tt} = \eta_{max}$).

Можно показать, что для такого теоретического цикла

$$\eta_{\max} = \frac{E_{Q_1}}{Q_1} = 1 - \frac{\ln(\lambda \rho^k)}{\varepsilon^{k-1} [(\lambda - 1) + k\lambda(\rho - 1)]}$$

а максимальная степень расширения

$$\delta_{\text{max}} = \frac{V_7}{V_1} = \varepsilon (\rho \lambda)^{\frac{1}{k-1}}.$$

Переход к циклу 1-2-3-4-5-6-1 с отводом теплоты Q_2 по изобаре 6-1 приводит к возникновению внешних потерь эксергии $E_{Q_2}=0,\!1315\,\mathrm{кДж}$. На эту величину уменьшается работа цикла. Еще большие

внешние потери эксергии $E_{\mathcal{Q}_2}$ в цикле 1-2-3-4-5-1 с отводом теплоты \mathcal{Q}_2 по изохоре. Согласно табл. 3 они численно равны 0,2015 кДж. В конечном итоге эти внешние потери эксергии приводят к уменьшению КПД теоретических циклов — $\eta_{\it ip}=72,1\%$, $\eta_{\it re}=68,1\%$.

Выше изложенное позволяет сделать вывод о том, что значения L_{\max} и η_{\max} являются предельными для принятых условий, достичь значения которых в реальном цикле невозможно из-за обязательных внутренних и внешних потерь эксергии (потерь работоспособности энергии), а также естественных проблем по техническому обеспечению расширения рабочего тела до температуры окружающей среды. Вместе с тем, величины L_{\max} и η_{\max} могут служить точкой отсчета при определении максимальных теоретических резервов повышения индикаторного КПД η_i и индикаторной работы L_i : $\Delta L_i = L_{\max} - L_i$, $\Delta \eta_i = \eta_{\max} - \eta_i$.

Возвращаясь к проблеме «предложений» по обеспечению $\eta_i = 70...80$ %, следует сказать, что в этом случае значения предлагаемых η_i становятся соизмеримыми с η_{max} , что, как показано в статье, противоречит теории, а следовательно, не может быть осуществлено на практике.

Список литературы:

1. Захребётков Ю.В. Эффективность нового способа работы теплового двигателя // Двигателестроение. – 2001. – № 2. – С. 34-36. 2. Маравский А.В., Файн М.А. Огонь в упряжке, или как изобретают тебплове двигатели. – M.: Знание, 1990. – 192 с. 3. Двигатели внутреннего сгорания. Теория поршневых и комбинированных двигателей / Д.Н. Вырубов, Н.А. Иващенко, В.И. Ивин и др. / Под ред. А.С. Орлина, *М.Г. Круглова. – М.: Машиностроение, 1983. – 372 с.* 4. Процессы в перспективных дизелях / Ф.И. Абрамчук, В.И. Крутов, А.П. Марченко и др. / Под ред. А.Ф. Шеховцова. -X.: Изд-во «Основа», 1992. -352 с. 5. Шокотов Н.К., Марченко А.П., Глушко А.В. Эксергия теплоты и образцовые циклы двигателей внутреннего сгорания // Двигатели внутреннего сгорания. -1993. – Вып. 54. – С. 45 – 54.