УДК 621.43.013

Е.П. Воропаев, инж.

ТРЕХМЕРНАЯ ГАЗОДИНАМИЧЕСКАЯ МОДЕЛЬ ЧЕТЫРЕХТАКТНОГО ЧЕТЫРЕХЦИЛИНДРОВОГО ПОРШНЕВОГО ДВС

Введение

Применение численного моделирования рабочих процессов двигателей позволяет сократить затраты на их создание и модернизацию. Поршневые ДВС эксплуатируются в широком диапазоне скоростных и нагрузочных режимов, показатели которых во многом зависят от газодинамических характеристик газовоздушного тракта. В этих условиях физико-математическая модель двигателя должна учитывать реальную геометрию газовоздушного тракта. Последнее достижимо только в трехмерных моделях.

1. Постановка задачи и описание модели

Целью данного исследования является моделирование различных режимов двигателя с последующим анализом и сравнением результатов с экспериментальными данными. Для апробации был выбран четырехтактный четырехцилиндровый двигатель MeM3-24506 автомобиля 3A3-1102 «Таврия». В источнике [1] приведена его внешняя характеристика. Кроме того, был смоделирован холостой ход двигателя реальным дросселированием впускного канала. Этот режим, с точки зрения эффективности индикаторного цикла, является для двигателя наиболее тяжелым. Указанное обстоятельство делает этот режим для модели весьма показательным.

Для описания газодинамических процессов была использована система дифференциальных уравнений, - состава, состояния, сохранения энергии, массы и импульса, - в трехмерной постановке. Газ - нетеплопроводный. Метод решения этой системы уравнений – метод Давыдова (метод крупных частиц) [2,3]. Предпочтение этому методу было отдано по следующим причинам: 1) относительная простота метода и его быстродействие; 2) однородная схема сквозного счета, без предварительного выявления особенностей (разрывов, их пересечений и взаимодействий).

При моделировании, в каждой ячейке на каждом шаге рассчитываются: энергия, плотность, скорость, показатель адиабаты и концентрации воздуха, топливных паров и отработавшего газа. В данной модели используются только прямоугольные ячейки одинаковых размеров, кроме тех, которые прилегают к поршням (там – и размеры, и количество ячеек переменные). В модели применены два вида ячеек: 1) счетные, которые находятся в потоке; 2) граничные, которые находятся в стенке.

Требование учета реальной геометрии впускного и выпускного трактов делает невозможным моделирование только одного единственного цилиндра, т.к. обе системы – впускная и выпускная – общие для всех четырех цилиндров. Область моделирования предлагаемой модели является единой и включает в себя: полость воздушного фильтра, карбюратор, впускной коллектор, все четыре цилиндра, выпускной коллектор, выпускные трубы, резонатор и первая камера глушителя. Рабочие циклы в цилиндрах происходят согласно порядку их работы.

Рис. 1. Расчетная схема впускного коллектора (горизонтальное сечение, половинка): 1 – к карбюратору; 2 – к 1-му цилиндру; 3 – ко 2-му цилиндру

В данной модели форма цилиндра и клапанов описываются несколько упрощенно: цилиндр – эквивалентный (по площади поршня и объему) прямоугольный параллелепипед, клапан – слой ячеек, которые меняют свой тип (счетные или граничные) в зависимости от степени открытия клапана. Эти допущения сделаны исходя из следующих соображений: 1) задача исследования течений внутри цилиндра не ставилась; 2) при охвате всего газовоздушного тракта и с этими упрощениями значительно возрастает время расчета.

Рис. 2. Расчетная схема впускного патрубка (вертикальное сечение):

1 – вход из атмосферы; 2 – коробка возд. фильтра;

- 3 диффузоры карбюратора;
- 4 плоскость дроссельных заслонок;
- 5 часть коллектора, идущая к цилиндрам

Положения в цилиндре стенки, соответствующей поршню, полностью соответствует положению поршня в цилиндре для данного угла поворота коленчатого вала. Это обеспечивается применением технологии так называемых «дробных ячеек» [2,3].

Как было отмечено выше, для данной задачи принципиален учет реальной геометрии впускного и

выпускного трактов. Для этого были выполнены замеры реальных деталей, составляющих газовоздушный тракт. Формирование расчетной области (по полученным размерам) производилось из текстового файла при помоши специально разработанной методики и программы. Размер ячейки составляет – 2,9 х 2,9 х 2,9 мм. Геометрия впускного коллектора повторена полностью (Рис. 1), - со всеми размерами, площадями и радиусами. В выпускном коллекторе выдержаны только длинновые размеры и площади, изгибы не учтены. Карбюратор – с двумя камерами и с заужениями в районе диффузоров (Рис. 2). Характерно, что был сохранен поворот потока на 90 град. между карбюратором и впускным коллектором. Количество ячеек составило: цилиндры – 4 х 16128 = 64512, впускная система - 77258, выпускная -445109, итого - почти 600 тыс. ячеек.

2. Результаты моделирования

Был выполнен расчет пяти режимов внешней скоростной характеристики: 1500, 2500, 3500, 4500 и 5500 об/мин, и холостой ход на 1000 об/мин.

Как уже было сказано выше, режим холостого хода был создан реальным дросселированием потока в районе дроссельных заслонок. Общее количество ячеек в этом поперечном сечении обоих камер составляет 200. Дросселирование составило – 99 %, т.е. открытыми остались только 2 ячейки (1%).

Следует подчеркнуть, что, т.к. исследовалась только газодинамическая модель, при изменении частоты вращения ни один параметр в модели двигателя изменен не был. Настройки моделей сгорания и теплообмена оставались неизменными для всех режимов. Например: продолжительность тепловыделения составляла 61 град и была привязана к углу поворота коленчатого вала. При этом точка максимального давления для всех режимов приходилась на (11 ... 15) град. п.к.в. после ВМТ. Коэффициент избытка воздуха составлял 0,87. В начале расчета скорости всех ячеек равны нулю, а термодинамические параметры примерно по крупному соответствуют местам и моментам в которых они находятся. По ходу расчета происходит разгон потока и дальнейшее установление параметров. Концом расчета принималось условие совпадения масс газов в каждом цилиндре в начале цикла и в конце. Для выполненных расчетов расхождения масс не превышали (0,5 ... 0,8)%. При этом дополнительно контролировались расхождения по мощности с предыдущим циклом – оно не превышало 1,2 %. До подобного установления параметров модели приходилось выполнять по четыре полных цикла на каждом режиме, а для холостого хода – 6.

Шаг интегрирования, в зависимости от частоты вращения, менялся в пределах – (0,005 ... 0,01) град. п. к. в.. При этом время расчета одного полного 4-х тактного (2 оборота коленвала) цикла составляло от 28 до 12 часов, в зависимости от частоты вращения. Это время счета дано для процессоров фирмы Intel (без технологии «М»), с тактовой частотой 2,4 ... 3,0 ГГц. Процессоры фирмы AMD сходной частоты считают почти в два раза быстрее.

Результаты моделирования представлены в Таблице 1, и на Рис. 3,4,5. В Таблице 1 представлены следующие параметры: эффективная мощность Ne, эффективный удельный расход топлива *ge*, коэффициент наполнения η_v , коэффициент остаточных газов γ , количество смеси, выброшенной обратно из цилиндра в конце впуска *Gs.выбр*, разрежение во впускном коллекторе ΔP_{BII} , максимальное давление цикла P_Z , количество теплоты, отведенное в систему охлаждения *Qoxл*, и – с отработавшими газами *Qoz*. Расхождения между экспериментальной характеристикой и расчетной по мощности и расходу топлива - ΔNe и Δge .

ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ 2'2006

Конструкция	ДВС
-------------	-----

n, об/мин	1000	(XX)	1500		2500		3500		4500		5500	
ЭКСПЕРИМЕНТ												
Ne, кВт	0		10,3		20,0		29,1		36,0		39,3	
ge, г/кВт*ч	н.д.		342		300		287		295		333	
					МОД	ЕЛИР	OBA	НИЕ				
Ne, кВт * ¹	1,71	1,71	11,32	11,36	20,89	20,92	28,98	28,98	36,91	36,98	42,66	42,65
Ne, кВт * ²	1,61	1,65	10,96	10,97	19,94	19,94	28,74	28,75	36,16	36,16	41,80	41,64
Ne, кВт	1,67		11,16		20,42		28,86		36,55		42,19	
ge, г/кВт*ч	480,1		300,6		290,2		291,8		297,7		308,4	
$\eta_v *^1$	0,282	0,282	0,787	0,789	0,841	0,842	0,839	0,839	0,846	0,848	0,830	0,830
$\eta_{v} *^{2}$	0,274	0,275	0,765	0,764	0,805	0,805	0,832	0,832	0,832	0,832	0,813	0,813
η_v	0,278		0,776		0,823		0,836		0,840		0,822	
γ * ¹	0,353	0,353	0,067	0,067	0,050	0,049	0,054	0,054	0,057	0,057	0,056	0,055
γ * ²	0,366	0,370	0,081	0,082	0,068	0,068	0,057	0,057	0,060	0,060	0,059	0,059
γ	0,360		0,074		0,059		0,056		0,058		0,057	
Gs.выбр, % * ¹	6,33	6,29	7,65	7,44	5,04	5,04	3,48	3,48	1,78	1,78	0,73	0,73
Gs.выбр, % * ²	6,32	6,27	8,09	8,11	5,80	5,81	4,41	4,42	2,62	2,62	1,28	1,29
$\Delta P_{B\Pi}$, кПа	46,55		0,357		1,77		3,062		4,367		5,574	
Р _z , МПа	2,05		4,87		5,25		5,51		5,63		5,56	
Q охл, %	42,4		27,7		21,6		19,2		17,7		16,6	
Q ог, %	41,1		32,8		34,9		35,9		36,9		37,8	
	РАСХОЖДЕНИЯ											
Δ Ne, %	-		+8,3		+2,1		-0,82		+1,52		+7,35	
Δ ge, %	н.д.		-12,1		-3,3		+1,67		+0,91		-7,39	

F 7	1	D						~					
Габлица		Pess	UTLTATH	молепи	DUBSHING	внешней	CKOP	остной у	anarte	пистики	U YOTO	TOTO	хола
гаолица	· · · ·	103	yJIDIGIDI	модоли	pobulin	Diffemilien	υπομ	JOCTHON A	upunic	phorman	n AOHO	1010	лоди

*¹ – параметры для 1-го и 4-го цилиндров.

*² – параметры для 2-го и 3-го цилиндров.

На Рис. 3,4,5 представлены изменения параметров по углу п.к.в. во время периода газообмена. Обозначены следующие параметры: G – масса газа в цилиндре, P – среднее давление в цилиндре, Рвп и *Рвып* – средние давления в сечениях перед впускным клапаном и за выпускным клапаном, P_D и W_D – среднее давление и скорость в сечении дроссельных заслонок, P_{Γ} и W_{Γ} – среднее давление и скорость в сечении перед глушителем, T - средняя температура в цилиндре, *Wвп* и *Wвып* – средние скорости в щели впускного и выпускного клапанов, g – средняя чистота смеси в цилиндре.

Некоторые параметры в таблице (обозначенные *¹ и *²) приведены дополнительно для каждого цилиндра отдельно. Это сделано потому, что ответвления впускного и выпускного коллекторов для внешних (1-й и 4-й) и внутренних (2-й и 3-й) цилиндров - разные, и, как видно из результатов – модель подтвердила разницу параметров между этими парами цилиндров.

В середине рабочего диапазона расхождения между экспериментальной и расчетной характеристиками практически отсутствуют, а с увеличением и с уменьшением частоты вращения растут. Отклонения мощности и расхода топлива – с разными знаками, и примерно равны. Принимая это во внимание, можно предположить, что эти расхождения вызваны за счет КПД цикла, а не за счет процессов газообмена. В пользу этого говорит и то, что процесс сгорания и коэффициент избытка воздуха не были скорректированы для разных режимов. В самом деле: на малой частоте вращения, в результате уменьшенной турбулентности и увеличенной теплоотдачи интенсивность сгорания должна падать, а на больших – увеличивается догорание на линии расширения.

Форма протекания кривой коэффициента наполнения η_v имеет классическую форму: максимум – в середине диапазона, на малой частоте вращения – уменьшение за счет увеличенного обратного выброса *Gs.выбр* (Рис. 3), на большой - за счет увеличенного разрежения $\Delta P_{B\Pi}$ и *Pвп* (Рис. 4). Моделирование холостого хода подтвердило крайне низкий коэффициент наполнения и высокий коэффициент остаточных газов. Из Рис. 5 видно, что в результате высокого разрежения во впускном коллекторе во время перекрытия клапанов происходит интенсивный заброс отработавших газов (~14% от общей массы газов в конце наполнения), причем не только из цилиндра, а и из выпускного коллектора. Скорость в дроссельной щели W_D – ниже критической.

Вызывает некоторую настороженность то, что дроссельная заслонка открыта всего на 1%. Безусловно, здесь нужно серьезно скорректировать процесс сгорания и уточнить коэффициент избытка воздуха, однако, по всей видимости, сказывается и то, что уравнения метода крупных частиц не описывают диссипацию механической энергии.

Заключение

Представленная модель показала качественно правильное моделирование характеристик 4-тактных поршневых ДВС. Количественно – можно говорить о погрешности (1 ... 6)% во всем диапазоне. Необходимы более серьезные экспериментальные данные для более предметного анализа и оценки результатов расчета. Следует также оценить степень влияния на интегральные параметры двигателя отсутствие в уравнениях использованного метода диссипативных членов, а также - явных вязкостных членов.

Список литературы:

1. Автомобиль ЗАЗ-1102. Руководство по ремонту. – Чернигов, Издательство «Десна» - 222 с. 2. Белоцерковский О.М., Давыдов Ю.М. Метод крупных частиц в газовой динамике. – М.: Наука. Гл. редакция физ.-мат. литературы, 1982, – 392 с. 3. Численное исследование течений в двигателях внутреннего сгорания методом крупных частиц / Ю.М. Давыдов, М.Г. Круглов, А.А. Меднов, В.А. Нефедов – Вычислительный центр АН СССР, 1983. – 59 с.