УДК 621.436.038

Ф.И. Абрамчук, д-р техн. наук, А.Н. Кабанов, асп.

МЕТОДИКА РАСЧЁТА ПРОЦЕССА СГОРАНИЯ ГАЗОВОГО ДВИГАТЕЛЯ С ВЫСОКОЭНЕРГЕТИЧЕСКОЙ СИСТЕМОЙ ЗАЖИГАНИЯ

Введение

Процесс сгорания в цилиндре ДВС является сложным комплексом физических и химических явлений, который в настоящее время очень сложно описать аналитически без каких-либо допущений. Поэтому для расчёта рабочего процесса целесообразно использовать упрощённую модель, которая с достаточной для практики точностью определяет закономерность тепловыделения.

Анализ литературных источников

Моделям процесса сгорания в двигателях с искровым зажиганием посвящено большое количество работ. Это модели Генкина К.И. [1], Неймана К. [2], Куценко А.С. [3], и др. [4, 5, 6]. Одной из простых и удобных в использовании моделей является методика Вибе И.И. [7]. Однако использование этой модели требует обработки индикаторных диаграмм, и чем больше точность экспериментальных данных, тем выше достоверность расчёта процесса сгорания.

Однако данная модель имеет недостаток. В качестве исходных данных основная величина, определяющая характер протекания процесса сгорания во времени — показатель сгорания m — задаётся как постоянная величина, в то время как в работе Филипковского А.И. [8] показано, что этот показатель изменяется с течением времени.

В то же время, методика Филипковского А.И. разрабатывалась для дизельных двигателей. Известно, что существует большая разница в протекании процесса сгорания в дизельных ДВС и двигателях с искровым зажиганием. Так, в дизелях максимальное количество теплоты обычно выделяется в начале процесса сгорания (m=0.1...1.2), в то время как в

двигателях с искровым зажиганием — приблизительно в середине данного процесса (m=3...4) [7]. Коэффициенты уравнения, описывающего изменение показателя m в процессе сгорания в [8], зависят от таких параметров, как константа испарения K_n и средний диаметр капель по Заутеру d_{32} , которые не применимы к двигателям с искровым зажиганием из-за специфики процесса сгорания. Кроме того, отсутствуют рекомендации по выбору показателя процесса сгорания m в ДВС с высокоэнергетической системой зажигания.

Поэтому уравнения, предложенные Филипковским А.И. для расчёта показателя сгорания m, для решения поставленной задачи не подходят. Следовательно, возникает необходимость разработки методики для исследования процесса сгорания в ДВС подобного типа. Это возможно сделать только основываясь на результатах экспериментальных исследований.

Однако, в открытых литературных источниках не приводятся методики, позволяющие определить переменный показатель m методом обработки данных, полученных экспериментально. Поэтому появилась необходимость разработки такой методики.

Цель исследования

Исходя из вышесказанного, целью данного исследования является разработка метода определения величины переменного показателя m в процессе сгорания по экспериментальным данным, а также разработка математической модели расчёта процесса сгорания газового ДВС с высокоэнергетической системой зажигания, используя переменный показатель m

Обработка экспериментальных данных

Для выполнения поставленной задачи на базе газового ДВС 6Ч13/14 с высокоэнергетической системой зажигания создана экспериментальная установка, описанная в [9].

Для определения индикаторных показателей цикла, кривой тепловыделения, а также продолжительности сгорания и кривой, описывающей изменение показателя m в процессе сгорания, применялось индицирование двигателя.

В качестве средства индицирования использовался автоматизированный комплекс для исследования и диагностики автотракторных двигателей «ИВК ДВС» [10] с регистрацией давлений через 1 °п.к.в., что позволило оперативно обрабатывать индикаторные диаграммы, получая зависимости тепловыделе-

ния

Выбор представительной индикаторной диаграммы осуществлялся следующим образом. На установившемся режиме работы двигателя обрабатывались на р_і 240 смежных индикаторных диаграмм. Далее определялось усредненное значение р_і, по которому подбиралось представительная индикаторная диаграмма. Эта диаграмма выбиралась для дальнейшей обработки.

Для обработки индикаторных диаграмм газового двигателя на кафедре ДВС ХНАДУ была разработана специальная методика, реализованная в программе, написанной с использованием языка DELPHI. Диалоговое окно программы приведено на рис. 1.

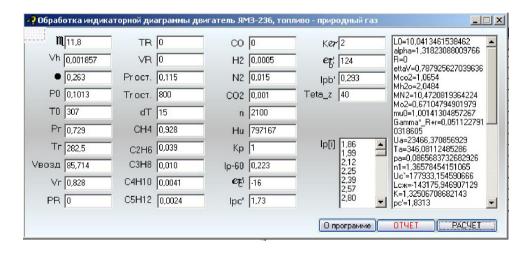


Рис. 1. Общий вид диалогового окна программы обработки индикаторных диаграмм газового ДВС

Математический план эксперимента

Исходя из поставленной задачи, исследование представляет собой четырёхфакторный эксперимент, представляющий собой подбор оптимальной комбинации параметров θ и α для любых сочетаний n и N_e — частоты вращения коленчатого вала, мин⁻¹, и эффективной мощности, кВт, соответственно. Оптимизация должна выполняться как по среднему эффек-

тивному расходу топлива g_e , г/(кВт·ч), так и по выбросам СО, СН, NO_x, г/(кВт·ч).

Известно, что количество экспериментов N, которое должно быть выполнено, рассчитывается по формуле

$$N = M^A \,, \tag{1}$$

где A — количество факторов, M — количество уровней, на которых варьируются факторы.

В нашем случае, для A=4 (θ , α , n, N_e), даже принимая M=3, необходимо провести 81 эксперимент, для M=5 – 625 экспериментов. Это связано с большими материальными затратами, что вызывает огромные сложности в современных условиях. Как следствие, необходимо использование математического планирования эксперимента, что позволит существенно экономить материальные ресурсы, что особенно важно в условиях их острой нехватки.

Для выполнения поставленной задачи был выбран ортогональный план 2-го порядка для 4-х факторов на 3-х уровнях. Для выполнения этого плана необходимо провести эксперимент всего в 25 точках. Исходные данные приведены в таблице 1.

Исходные данные в таблице 1 выбирались исходя из следующих соображений.

При α <1 топливо сгорает не полностью, и, как следствие, существенно увеличивается расход топлива и сильно увеличиваются выбросы СО и СН. При α >1,5 существенно снижаются мощностно-экономические показатели газового ДВС.

Таблица 1. Исходные данные для математического планирования

α	θ	п	N_e
-	град. пкв до ВМТ	мин ⁻¹	кВт
1	32	1000	0
1.25	36	1550	50
1.5	40	2100	100

Пределы изменения угла опережения зажигания θ, град. пкв до ВМТ, выбирались на основании опытных данных, полученных в результате предварительных испытаний газового ДВС 6Ч13/14.

Диапазон изменения частоты вращения коленчатого вала n, мин $^{-1}$, и эффективной мощности N_e , кВт, выбирался исходя из наиболее вероятных режимов работы исследуемого двигателя, как в стационарном режиме, так и в режиме транспортной установки.

Функция отклика имеет следующий вид:

$$\begin{split} g_e &= -343.227 + 3.214 \cdot \alpha - 0.016 \cdot n - 5.935 \cdot 10^{-3} \cdot \theta - 0.449 \cdot N_e - 147.296 \cdot \alpha^2 - 5.62 \cdot 10^{-8} \cdot n^2 - \dots \\ \dots &- 2.00375 \cdot 10^{-4} \cdot \theta^2 + 3.5176 \cdot 10^{-6} \cdot N_e^2 + 1.727 \cdot 10^{-5} \cdot \alpha \cdot n + 8.75 \cdot 10^{-4} \cdot \alpha \cdot \theta + 2.8 \cdot 10^{-4} \cdot \alpha \cdot N_e + \dots \\ \dots &+ 4.205 \cdot 10^{-6} \cdot n \cdot \theta + 3.227 \cdot 10^{-4} \cdot n \cdot N_e + 1.812 \cdot 10^{-5} \cdot \theta \cdot N_e. \end{split}$$

Экологические параметры газового ДВС исследовались расчётным путём с использованием методики, разработанной на базе методики описанной в работе [3].

Методика определения переменного показателя m из экспериментальных данных и разработка математической модели

В работе [8] нет методики определения изменения показателя m в процессе сгорания по экспериментальным данным, поэтому появилась необходимость разработки методики для определения пере-

менного показателя m в процессе сгорания вида $m = f(t/t_z, x)$.

Поставленная задача была решена путём преобразования уравнения Вибе [7]

$$\left(\frac{t_i}{t_z}\right)^{m+1} = \frac{\ln(1-x_i)}{\ln(1-x_z)},$$
(3)

где t_i — время, прошедшее с момента начала сгорания, с; t_z — общая продолжительность сгорания, с; x_i — доля топлива, которая выгорела к моменту времени t_i ; x_z — общая доля выгоревшего топлива, x_z =0.999; i — порядковый номер элемента в массиве.

В уравнении (3) величина $ln(1-x_z)$ является

постоянной величиной и представляет собой известную константу Вибе С. При $x_z = 0,999$ C=-6,908. Таким образом, для каждой пары значений t_i и x_i имеется единственное значение m. А так как относительные величины t_i и x_i изменяются в процессе сгорания, то значение показателя m в процессе сгорания также изменяется, и принимает вид переменного показателя m_i .

В результате ряда математических преобразований уравнения (3) была получена зависимость, позволяющая определять значения переменного показателя m_i из экспериментальной кривой тепловыделения

$$m_i = -1 - \log_{\frac{t_i}{t_z}} \frac{-6.908}{\ln(1 - x_i)},$$
 (4)

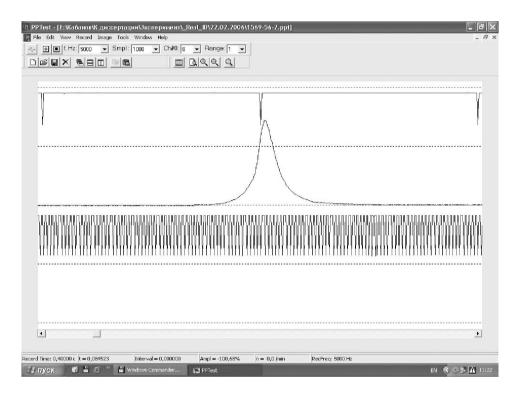


Рис. 2. Копия экрана процедуры снятия индикаторной диаграммы в цилиндре газового ДВС 6Ч 13/14

Постоянный показатель сгорания определялся по методике, описанной в [7]. Как показала обработка индикаторных диаграмм, полученных экспериментально, его постоянное значение изменялось в пределах 3.16...3.81. На режимах, для которых был выбран оптимальный угол опережения зажигания, эта величина изменялась в пределах 3.35...3.56.

Продолжительность сгорания ϕ_z , град. пкв, определялась как сумма углов начала сгорания ϕ_{z1} , град. пкв до ВМТ, и окончания сгорания ϕ_{z2} , град. пкв после ВМТ.

Угол начала сгорания ϕ_{z1} определялся методом наложения экспериментальной индикаторной диаграммы, полученной при работающем зажигании в цилиндре, на диаграмму сжатия-расширения, получаемую при отключении зажигания в индицируемом цилиндре. Точка отрыва индикаторной диаграммы от кривой сжатия-расширения считается началом сгорания.

Угол окончания сгорания ϕ_{z2} определялся при обработке индикаторных диаграмм. Условием окон-

чания сгорания принималось достижение максимальной температуры цикла.

Как показала обработка индикаторных диаграмм, полученных экспериментально, продолжительность сгорания, в зависимости от режима, изменялась в пределах 28...65 град. пкв. На режимах, для которых был выбран оптимальный угол опережения зажигания, эта величина изменялась в пределах 32...42 град. пкв.

На основе результатов обработки экспериментальных данных были разработаны формулы для определения переменного показателя m при расчёте процесса сгорания, а также продолжительности сгорания.

Зависимость переменного показателя m от частоты вращения n, мин⁻¹, угла опережения зажигания θ , град. пкв до ВМТ, и коэффициента избытка воздуха α выражается следующим уравнением

$$m_{i} = 0.093 + 13,866 \cdot t_{i} \cdot \frac{n \cdot 0.01 + 10,32}{n \cdot 0.01 + 9.21} + \dots$$

$$\dots + 10,67 \cdot t_{i}^{2} \cdot \frac{\alpha \cdot 1.9}{\alpha + 1} - \dots$$

$$\dots - 85,98 \cdot t_{i}^{3} \cdot \frac{n \cdot 0.089}{n \cdot 0.089 + 2.261} + \dots$$

$$\dots 69,78 \cdot t_{i}^{4} \cdot \frac{\Theta}{\Theta + 1,326},$$
(5)

Зависимость продолжительности сгорания от вышеперечисленных показателей выражается следующим уравнением

$$\varphi_z = 40 \cdot (0.812 \cdot \alpha - 0.028 \cdot \theta + 5.762 \cdot 10^{-4} \cdot n - \dots
\dots - 0.1258 \cdot \eta_v + 0.146).$$
(6)

Пример расчёта процесса сгорания при постоянном и переменном *m* и сравнение с результатами эксперимента

В качестве примера проведём исследование одного из экспериментальных режимов. Параметры режима следующие: частота вращения коленчатого

вала n=1550 мин⁻¹, эффективная мощность $N_e=100$ кВт, угол опережения зажигания $\theta=36$ град. пкв до ВМТ, коэффициент избытка воздуха $\alpha=1,25$, продолжительность сгорания $\phi_z=36$ град. пкв, момент начала воспламенения $\phi_{z1}=18$ град. пкв до ВМТ, момент окончания сгорания $\phi_{z2}=18$ град. пкв после ВМТ, значение постоянного показателя сгорания, определённого методом наименьших квадратов m=3,4.

На рис. 3, 4, 5 приведены результаты расчётов при постоянном m, определённом по методу наименьших квадратов, и при переменном показателе m, определённом по методике, приведенной выше, в сравнении с результатами эксперимента.

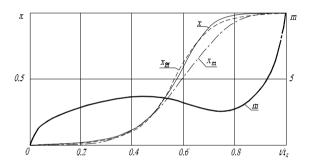


Рис. 3. Расчётные и экспериментальная кривые тепловыделения

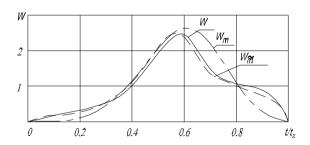


Рис. 4. Расчётные и экспериментальная кривые скоростей тепловыделения

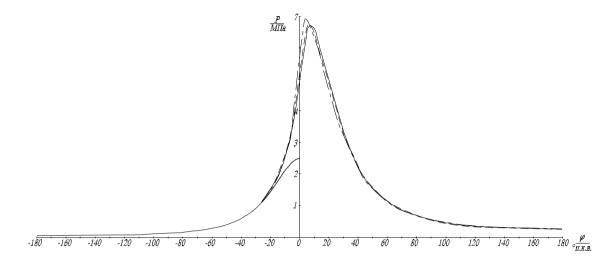


Рис. 5. Расчётные и экспериментальная индикаторные диаграммы:

---- - индикаторная диаграмма, рассчитанная по модели Вибе с постоянным показателем т;
 - - - - - индикаторная диаграмма, рассчитанная по модели с переменным показателем т;
 - экспериментальная индикаторная диаграмма

В таблице 2 приведены результаты обработки расчётных и экспериментальной индикаторных диаграмм на среднее индикаторное давление. В данной таблице p_{im} , $p_{im\Box}$, p_i — индикаторные давления, полученные при обработке индикаторных диаграмм, рассчитанных по методу Вибе с постоянным m, по модели с переменным m и полученной экспериментально соответственно.

Таблица 2 Результаты расчёта среднего индикаторного давления

Величина	p _{im}	$p_{im\square}$	\mathbf{p}_{i}
Значение	0.792	0.771	0.751

Из таблицы 1 видно, что при обработке индикаторной диаграммы, рассчитанной по методу Вибе с постоянным m, погрешность определения индикаторного давления составила 5.4 %, в то время как при расчёте по методике с переменным m погрешность определения p_i составляет 2.7 %.

При сравнении расчётных и экспериментальных диаграмм по максимальной величине давления сгорания p_z также видно, что предлагаемая методика

обеспечивает более точное соответствие экспериментальным результатам (таблица 3).

Таблица 3 Сравнение расчётных и экспериментальных индикаторных диаграмм по р_z

Величина	p_{zm}	$p_{zm\square}$	p _z
Значение	6.94	6.75	6.61

Из таблицы 3 видно, что погрешность расчётов по методу с постоянным показателем m составляет 4.9%, a по методике с переменным m-2.1%.

Выводы

- 1. За основу расчёта процесса сгорания газового ДВС с высокоэнергетической системой зажигания взято уравнение Вибе.
- 2. Современный автоматизированный комплекс «ИВК ДВС» позволяет регистрировать индикаторные диаграммы с высокой точностью.
- 3. Для обработки индикаторных диаграмм газового ДВС была разработана методика, позволяю-

щая получать значения переменного показателя m.

- 4. Математическое планирование эксперимента, в частности, ортогональный план 2-го порядка для 4-х факторов, варьируемых на 3-х уровнях, позволил значительно сократить количество опытов.
- 5. Получены обобщённые зависимости для переменного показателя сгорания m и продолжительности сгорания φ_z .

Список литературы:

1. Генкин К.И., Анализ и расчёт влияния сгорания на рабочий процесс в двигателе с искровым зажиганием, Сб. трудов конференции «Поршневые двигатели внутреннего сгорания», Изд-во АН СССР, 1956. — С.26—30. 2. Нейман К., Кинетический анализ процесса сгорания в дизеле, Сб. монографий из иностранной литературы «Двигатели внутреннего сгорания», т. IV, Машниз, 1938. 3. Куценко А.С. Моделирование рабочих процессов двигателей внутреннего сгорания на ЭВМ. — Киев: Наук. думка, 1988. — 100 с. 4. Samaga B.S., Murthy B.S. Investigation of a Turbulent Flame Propagation Model for Applikation for Combustion Prediction in the Engine. "SAE Preprint", N760758, 1976, 12pp. 5. G.M. Abu-orf and R.S. Cant. A turbulent

reaction rate model for premixed turbulent combustion in spark-ignition engines. Combust. Flame, 122:233-252, 2000. 6. Han Z., Reitz R.D., Turbulence Modeling of Internal Combustion Engines using RNG k-ε Models, Combust. Sci. and Tech. 1995, Vol 106, pp267-295. 7. Вибе И.И. Новое о рабочем цикле двигателей. М.: *Машгиз*, 1962. – 270 с. 8. Филипковский А.И. Совершенствование рабочего процесса дизелей типа ЧН 32/32 на основе физического и математического моделирования: дис. канд. техн. наук: 05.04.02/Харьковский политехнический институт. — *Харьков, 1988. – 193 с. 9. Богомолов В.А., Абрамчук* Ф.И., Манойло В.М. Экспериментальная установка для доводки систем зажигания и управления газовым двигателем с искровым зажиганием 6Ч13/14 // $A\Gamma 3K + AT$ / Международный научно-технический журнал. – М.: Изд-во АГЗК+АТ. – 2005. – № 4 (22). – С. 42-45. 10. Абрамчук Ф.И., Пойда А.Н., Ефремов А.А. Новая автоматизированная система исследования и диагностирования автотракторных двигателей // Автомобильный транспорт / Сб. научн. тр. - Харьков: Изд-во XHAДУ. - 2005. - Вып. 17. - C.28-34.

УДК. 621.43: 62-66: 62-62

Е.В. Белоусов, канд. техн. наук

ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ ВЛИЯНИЯ ПРОДОЛЖИТЕЛЬНОСТИ ПРОДУВКИ СЛОЯ ТОПЛИВА НА РАБОЧИЙ ПРОЦЕСС ТВЕРДОТОПЛИВНОГО ПОРШНЕВОГО ДВИГАТЕЛЯ

1. Актуальность проблемы

Слоевое сжигание твердых топлив в рабочем пространстве поршневого двигателя является принципиально новым направлением в области теории и практики ДВС. В этой связи многие аспекты, связанные с характером протекания рабочего процесса, влиянием отдельных факторов на эффективность и рабочие характеристики двигателя данного класса на сегодня практически не исследованы. В то же время, учитывая тот интерес, который сегодня существует к