энергетика

УДК: 697.34

Д. А. КОВАЛЁВ, аспирант

Харьковская национальная академия городского хазяйства, г. Харьков

ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ЭКСПЛУАТАЦИИ ИСТОЧНИКА ТЕПЛОВОЙ ЭНЕРГИИ

Рассматриваются вопросы повышения эффективности эксплуатации источника тепловой энергии – котельной, за счет выбора рациональных величин расходов теплоносителя для отдельных котлов.

Розглядаються питання підвищення ефективності експлуатації джерела теплової енергії — котельної, за рахунок вибору раціональних величин витрат теплоносія для окремих котлів.

Введение

Известно [1], что система централизованного теплоснабжения (СЦТ) города представляет собой сложную иерархическую структуру, в состав которой входят: источник тепловой энергии (ТЭС или районные котельные), магистральные тепловые сети с подкачивающими насосными станциями на них и тепловыми камерами, центральные тепловые пункты (ЦТП) на группы зданий, внутриквартальные тепловые сети, индивидуальные тепловые пункты с системами отопления (ИТП с СО) и непосредственно тепловые приборы потребителей тепловой энергии.

Исходя из проведенных ранее исследований и публикаций [2,3] актуальным, ввиду высокой стоимости топливно-энергетических ресурсов, является решение задач по повышению эффективности эксплуатации объектов СЦТ, в частности, по повышению эффективности эксплуатации источника тепловой энергии — котельной. Одним из вариантов решения этой задачи может быть выбор рациональных величин расходов теплоносителя для отдельных котлов котельной.

Основная часть

Для источника тепловой энергии – котельной ОАО «Хартрон» (г. Харьков) был проведен пассивный эксперимент, в результате которого были получены массивы данных почасовой работы водогрейных газомазутных котлов (ПТВМ). Существующая котельная оборудована 4 котлами ПТВМ-30М, во время проведения пассивного эксперимента требуемое количество тепловой энергии производилось двумя работающими котлами.

Водогрейный отопительный котел ПТВМ-30 М тепловой мощностью 35 МВт (30 Гкал/ч) предназначен для получения горячего теплоносителя давлением до $1,35 \text{ МПа} (13,5 \text{ кгс/см}^2)$ и температурой до 150 °C [4].

Котел ПТВМ-30М оборудован шестью газомазутными горелками, установленными по три встречно на каждой боковой стенке топочной камеры котла. Диапазон управления нагрузкой отопительных котлов 30-100% номинальной производительности. Управление производительностью осуществляется путем изменения числа работающих горелок.

Технические данные котла ПТВМ-30 М приведены в табл. 1 [5].

Для повышения эффективности эксплуатации котельной ОАО «Хартрон» целесообразно выбрать рациональные величины расходов теплоносителя для котлов ПТВМ - 30 М, при которых суммарные затраты для котельной будут минимальными, при условии, что общая тепловая производительность котлов будет соответствовать требуемым значениям.

Для этого при текущих температурах: наружного воздуха, уходящих дымовых газов и теплоносителя до и после котлов необходимо выбрать такое сочетание расходов теплоносителя через котлы при которых суммарные затраты (3) для котельной будут минимальными:

Таблица 1 Технические данные котла ПТВМ-30M

Наименование	Единица измерения	Величина
Тепловая производительность	МВт (Гкал/ч)	
а) топливо – газ		35 (30)
б) топливо – мазут		35 (30)
Рабочее давление	МПа (кгс/см ²)	1-1,68 (10-16,8)
Номинальная температур	a	
теплоносителя	°C	
а) на входе		70
б) на выходе		150
Номинальный расход		
теплоносителя, при режиме	кг/с (т/ч)	
а) пиковом		208,3(750)
б) основном		103,3 (372)
Расчётное гидравлическое		
сопротивление котла	MПа (кгс/см ²)	0,25 (2,5)
Температура уходящих газов	°C	
а) топливо – газ		150
б) топливо – мазут		220
К.П.Д. брутто	%	
а) топливо – газ		91,08
б) топливо – мазут		87,91
Расход топлива	2 2	
а) топливо — газ	${\rm Hm}^3/{\rm c} ({\rm Hm}^3/{\rm q})$	1,08(3880)
б) топливо – мазут	кг/с (кг/ч)	1,03(3700)
Минимальный расхо		
теплоносителя через котёл	кг/с (т/ч)	90,3 (325)

$$3 = \sum_{i=1}^{2} 3_i \rightarrow \min, \qquad \Gamma \text{pH/q} \tag{1}$$

где 3_i — величина затрат для каждого работающего котла, грн/ч;

 $i = \overline{1;2}$ – количество постоянно работающих котлов.

Величина затрат для каждого котла представляет собой:

$$3_i = 3_i(N) + 3_i(Q),$$
 грн/ч (2)

где $3_i(N)$ — величина затрат на электрическую энергию для преодоления гидравлического сопротивления работающих котлов и потерь давления в магистральной тепловой сети, грн/час;

 $3_i(Q)$ – величина затрат на тепловую производительность для каждого работающего котла, грн/ч;

Величина затрат на электрическую энергию для каждого работающего котла для преодоления его гидравлического сопротивления и потерь давления в магистральной тепловой сети определяем по формуле:

$$3_i(N) = 3_{\mathfrak{I}} \cdot N_i, \quad \text{грн/ч} ,$$
 (3)

где $3_{3n} = 0,485$ грн/кВт•ч — тариф на электрическую энергию;

 N_i — мощность электродвигателя насоса на преодоление гидравлических сопротивлений котла и магистральной тепловой сети, кВт;

Величина затрат на тепловую производительность для каждого работающего котла определяем по формуле:

$$3_i(Q) = 3_{men\pi} \cdot Q_i , \qquad \Gamma pH/q , \qquad (4)$$

где: $3_{menn} = 265,12$ грн/Гкал•ч — тариф на тепловую энергию;

 Q_i – тепловая производительность котла, Вт;

Исходя из [6], мощность электродвигателя насоса на преодоление гидравлических сопротивлений котла и магистральной тепловой сети определяется по формуле:

$$N_i = \frac{F_{mens.i} \cdot (P_{\kappa.i} + P_c) \cdot g}{1000 \cdot \eta} , \qquad \kappa B\tau, \qquad (5)$$

где $F_{men.i}$ – расход теплоносителя проходящего через котел, кг/с;

 $P_{\kappa,i}$ - гидравлическое сопротивление котла, м. вод. ст;

 P_{c} – гидравлическое сопротивление магистральной тепловой сети, м. вод. ст;

g – ускорение свободного падения, $g = 9.8 \text{ м/c}^2 [7]$;

 η – к.п.д. насоса, принимаем η =0,6 [6];

Гидравлическое сопротивление котла определяем по формуле [8]:

$$P_{\kappa,i} = P_{\kappa,i \, pacu} \cdot \left(\frac{F_{mens,i}^2}{F_{mon}^2}\right), \quad \text{M}\Pi a , \qquad (6)$$

где $P_{\kappa.i\,pacv}$ =0,25 МПа – расчетное гидравлическое сопротивление котла (табл. 1);

 $F_{_{HOM}} = 103,3~$ кг/с — номинальный расход теплоносителя проходящего через котел при основном режиме (табл. 1);

Гидравлическое сопротивление магистральной тепловой сети определяем по формуле [9]:

$$P_c = 2 \cdot (R \cdot l \cdot (1 + \kappa_M)), \qquad M\Pi a, \qquad (7)$$

где R — удельные потери давления на трение на участке магистральной тепловой сети, принимаем R =80 Па/м [9];

 $\it l$ – длина участка магистральной тепловой сети от котельной ОАО Хартрон до ТРС , $\it l$ = 420 м;

 $\kappa_{\scriptscriptstyle M}$ — коэффициент потерь давления на местные сопротивления, принимаем $\kappa_{\scriptscriptstyle M}$ =0,25 [9].

Исходя из [10] упрощенно определяем тепловую производительность котла:

$$Q_i = Q_{men\pi,i} + Q_{\nu,\partial,z,i} , \qquad B_T , \qquad (8)$$

где $Q_{men.i}$ – количество тепловой энергии производимое котлом, B_{T} ;

 $Q_{y,\partial,z,i}$ — потери тепловой энергии с уходящими дымовыми газами, Вт;

Количество тепловой энергии производимое котлом определяем по формуле [10]:

$$Q_{men\pi,i} = c_{men\pi} \cdot F_{men\pi,i} \cdot (T_{1i} - T_{2i}), \qquad B_{T}, \tag{9}$$

где $c_{men\pi}$ — удельная теплоемкость теплоносителя, $c_{men\pi} = 4187 \ \text{Дж/(кг} \cdot ^{\circ}\text{C}) \ [7];$

 T_{li} – температура теплоносителя после i-го котла, °C;

 T_{2i} – температура теплоносителя перед *i*-м котлом, °C;

Теплосодержание уходящих дымовых газов определяем по формуле [10]:

$$Q_{y,\partial,z,i} = c_{y,\partial,z} \cdot F_{y,\partial,z,i} \cdot T_{y,\partial,z,i}, \qquad B_{T}, \qquad (10)$$

где: $c_{y.\partial.z}$ — удельная теплоемкость уходящих дымовых газов, $c_{y.\partial.z}$ =1000 Дж/(кг·°С) [7];

 $F_{y.\partial.z.i}$ – расход уходящих дымовых газов после *i*-го котла, кг/с;

 $T_{v.d.c.i}$ – температура уходящих дымовых газов после *i*-го котла, °C;

Расход уходящих дымовых газов после *i*-го котла [10]:

$$F_{y,\partial,z,i} = F_{za3a\ i} \cdot V_{cz} \cdot \rho_{y,\partial,z} \quad , \qquad M^3/q \quad , \tag{11}$$

где: $F_{rasa i}$ – расход сжигаемого газа для i-го котла, кг/с;

 V_{cz} – объем продуктов сгорания газа на м³ сжигаемого газа, для природного газа V_{cz} = 10,52 м³ на м³ сжигаемого газа [7];

 $\rho_{\nu,\partial,z}$ – плотность уходящих дымовых газов [10], кг/м³.

Из массивов данных полученных в результате проведения пассивного эксперимента на котельной ОАО «Хартрон» были выбраны пять различных значений T_{Ii} и соответствующие им значения T_{2i} , F_{menx} , F_{casa} , $T_{v.o.c.}$ для двух котлов работающих одновременно (табл. 2).

Таблица 2 Экспериментальные значения параметров технологического процесса котельной OAO «Хартрон»

Nº	$T_{l},$ °C	<i>T</i> ₂ , °C	$F_{men\pi}$		F_{ε}	аза	$T_{y,\partial,z,},$ °C		
			м ³ /ч	кг/с	м ³ /ч	кг/с			
	1 котел								
1	88	51	475	132	3340	928	110		
2	96	50	470	131	4700	1306	118		
3	110	49	475	132	5195	1443	130		
4	122	50	470	131	5700	1583	162		
5	130	55	465	129	5755	1599	163		
	2 котел								
1	65	51	490	136	3340	928	69		
2	74	50	490	136	5700	1583	80		
3	88	55	495	138	6245	1735	99		
4	95	59	490	136	6600	1833	100		
5	110	60	450	125	6800	1889	124		

Для выбранных параметров технологического процесса котельной по приведенным выше формулам (5) - (11) были рассчитаны значения мощности электродвигателей насосов и тепловой производительности для характерного при проведении пассивного эксперимента режима с двумя работающими котлами (табл. 3).

Задача выбора рациональных величин расходов теплоносителя для двух котлов источника тепловой энергии ПТВМ-30М, с использованием стандартных программных комплексов (Excel) может быть поставлена как задача нелинейного математического программирования [11], т. е. выражение (1) является целевой функцией. Далее, варьируя параметры управления, необходимо найти такие значения $F_{men,i}$ для двух работающих

энергетика

котлов, которые обеспечат минимальные затраты для котельной, при условии изменения расхода теплоносителя в пределах $10 \% F_{menn.i}$ [4].

Таблица 3 Расчетные значения мощности электродвигателей насосов и тепловой производительности котельной ОАО «Хартрон»

	no realistic and production								
					$F_{y.\partial.z.}$				
№	$P_{\kappa.i}$, м. вод. ст.	$P_c,$ м. вод. ст.	N _i , кВт	Q _{тепл.} , Вт	м ³ /ч	кг/с	Q _{y.д.г.і} , Вт	Q _i , Вт	
	1 котел								
1	40,76		105,946	20440701	35137	8,8	869636	21310337	
2	39,91	8,4	103,010	25145261	49444	12,4	1312738	26457999	
3	40,76		105,946	33699535	54651	13,7	1598553	35298088	
4	39,91		103,010	39357800	59964	15,0	2185688	41543488	
5	39,06		100,133	40561563	60543	15,1	2220400	42781962	
	2 котел								
1	43,38		115,105	7978561	35137	8,8	545499	8524060	
2	43,38		115,105	13677533	59964	15,0	1079352	14756885	
3	44,27	8,4	118,278	18998513	65697	16,4	1463410	20461922	
4	43,38		115,105	20516300	69432	17,4	1562220	22078520	
5	36,58		91,840	26168750	71536	17,9	1995854	28164604	

Из выражений (1)–(4) определяем расчетные затраты для котельной (табл. 4).

Расчетные затраты для котельной ОАО «Хартрон»

Таблица 4

	1 котел				2 котел				3,
No	N_i ,	$3_i(N)$	Q_i ,	$3_i(Q)$	N_i ,	$3_i(N)$	Q_i ,	$3_i(Q)$	í
	кВт	грн/час	Вт	грн/час	кВт	грн/час	Вт	грн/час	грн/час
1	105,946	51,38	21310337	6570,71	115,105	55,83	8524060	2628,26	9306,19
2	103,010	49,96	26457999	8157,92	115,105	55,83	14756885	4550,06	12813,76
3	105,946	51,38	35298088	10883,62	118,278	57,36	20461922	6309,12	17301,49
4	103,010	49,96	41543488	12809,29	115,105	55,83	22078520	6807,57	19722,65
5	100,133	48,56	42781962	13191,16	91,840	44,54	28164604	8684,12	21968,39

Область определения целевой функции будет определяться соотношениями:

$$Q_{men\pi} = \sum Q_{men\pi i} , \qquad (12)$$

$$F_{\text{HOM. min}} \le F_{\text{men..i}} \le F_{\text{HOM. max}} \,. \tag{13}$$

Для решения задачи выбора рациональной тепловой производительности для двух котлов необходимо разработать алгоритм оценки целевой функции:

$$3 = 3_{3.7} \cdot \sum_{i=1}^{n} \left(\frac{F_{menn.i} \cdot (P_{\kappa.i} + P_c) \cdot g}{1000 \cdot \eta} \right) + 3_{menn} \cdot \sum_{i=1}^{n} \left(\left(c_{menn.i} \cdot F_{menn.i} \cdot (T_{1i} - T_{2i}) \right) + \left(c_{y.\partial.e.} \cdot F_{y.\partial.e.} \cdot T_{y.\partial.e.} \right) \right). \tag{14}$$

Применяя МНК получены линейные зависимости между расчетными значениями $Q_{y,\partial,z,i} = f(F_{men,i})$ для двух котлов :

1 котел:
$$Q_{v,\partial,\varepsilon,I} = -417668 + 0.065 \cdot (F_{menn,I})$$
. (15)

2 котел:
$$Q_{v,d,z,2} = -46274 + 0.079 \cdot (F_{men,z}).$$
 (16)

Подставляя (15) и (16) в (14) получаем:

$$3 = 3_{3n} \cdot \left(\frac{F_{menn1} \cdot (P_{\kappa.1} + P_c) \cdot g}{1000 \cdot \eta} \right) + 3_{menn} \cdot \left(\left(c_{menn} \cdot F_{menn1} \cdot (T_{1.1} - T_{2.1}) \right) + \left(-417668 + 0,065 \left(c_{menn} \cdot F_{menn1} \cdot (T_{1.1} - T_{2.1}) \right) \right) \right) + \left(-46274 + 0,079 \left(c_{menn} \cdot F_{menn2} \cdot (T_{1.2} - T_{2.2}) \right) \right) \right)$$

$$+ 3_{3n} \cdot \left(\frac{F_{menn2} \cdot (P_{\kappa.2} + P_c) \cdot g}{1000 \cdot \eta} \right) + 3_{menn} \cdot \left(\left(c_{menn} \cdot F_{menn2} \cdot (T_{1.2} - T_{2.2}) \right) + \left(-46274 + 0,079 \left(c_{menn} \cdot F_{menn2} \cdot (T_{1.2} - T_{2.2}) \right) \right) \right)$$

$$(17)$$

Для решения задачи по повышению эффективности эксплуатации котельной применяем программное средство Excel — поиск решения, использующее алгоритм нелинейной оптимизации Generalized Reduced Gradient [12]. При этом процедура поиска решения позволяет найти оптимальное значение формулы содержащейся в ячейке, которая называется целевой. Эта процедура работает с группой ячеек, прямо или косвенно связанных с формулой в целевой ячейке. Чтобы получить по формуле, содержащейся в целевой ячейке, заданный результат, процедура изменяет значения во влияющих ячейках. Для сужения множества значений, используемых в модели, применяются ограничения. Эти ограничения могут ссылаться на другие влияющие ячейки.

В результате расчетов целевой функции (17) получаем значения расходов теплоносителя для двух котлов, а также величину затрат для котельной (табл. 5).

Таблица 5 Полученные значения расходов теплоносителя для двух котлов, а также величина затрат для котельной OAO «Хартрон»

	1 кс	тел	2 ко		
№	F_m	<i>епл</i>	F_n	3, грн/час	
	кг/с	${ m M}^3/{ m H}$	кг/с	м ³ /ч	
1	138	497	125	450	9259,56
2	140	504	128	460	12598,55
3	142	512	126	453	17240,64
4	141	508	120	432	19511,8
5	143	514	124	446	21796,82

Выводы

- 1. Для повышения эффективности эксплуатации источника тепловой энергии котельной был разработан алгоритм выбора рациональных величин расходов теплоносителя для отдельных котлов источника тепловой энергии котельной.
- 2. В результате расчетов были получены значения расходов теплоносителя для двух котлов, а также величины затрат для котельной, которые меньше расчетных затрат.
- 3. Разработанный алгоритм выбора рациональных величин расходов теплоносителя для отдельных котлов источника тепловой энергии котельной в первом приближении может быть использован при создании систем автоматического управления (САУ) технологическими процессами для объектов управления закрытой СЦТ.

Список литературы

- 1. Н. А. Шульга, А. А. Бобух, Д. А. Ковалев. Исследование закрытой системы централизованного теплоснабжения как сложного объекта управления. // Коммунальное хозяйство городов: Науч.- техн. сб. Вып. 72. К: Техніка, 2006. С. 164 169.
- 2. Н. А. Шульга, А. А. Бобух, Д. А. Ковалев. Разработка многопараметрической линейной математической модели источника тепловой энергии котельной// Коммунальное хозяйство городов: Науч.-техн. сб. Вып. 67. К.: Техніка, 2006. С. 206 211.
- 3. Н. А. Шульга, А. А. Бобух, Д. А. Ковалев. К вопросу применения метода наименьших квадратов для разработки математических моделей объектов управления технологическими процессами инженерных систем// XXXIII научно-техническая

энергетика

конференция преподавателей, аспирантов и сотрудников $XHA\Gamma X$: тезисы докл. – Xарьков, 2006. – C. 223.

- 4. Котел водогрейный типа ПТВМ-30М. Руководство по монтажу и эксплуатации A-7513 РЭ. Дорогобужкотломаш. 20 с.
- 5. Павлов Н.И. Котельные установки и тепловые сети/ Н. И.Павлов, М. Н.Федоров. М : Стройиздат. 1986. 232 с.
- 6. Справочник эксплуатационника газифицированных котельных/ Под ред. Е. Б. Столпнера. Л.: Недра, 1988.-608 с.
- 7. Чеботарев В.П. Справочник работника газифицированных котельных/ Чеботарев В.П. К.: Основа, 2000. 298 с.
- 8. Справочник по гидравлике/ Под ред. В.А. Большакова. К.: Вища школа, 1984. 343 с.
- 9. ДБН В.2.5-39:2008. Теплові мережі. Інженерне обладнання будинків і споруд. Зовнішні мережі та споруди. К: Мінрегіонбуд України, 2009. 56 с.
- 10. Тепловой расчет котельных агрегатов/ Под ред. Н. В. Кузнецова. М.: Энергия, 1973. 296 с.
- 11. Стоянов Ф. А. Методы системного анализа в задачах рационального проектирования централизованных систем теплоснабжения: Учеб. пособие для студентов вузов/ Стоянов Ф. А., Андреев С. Ю., Шевченко Л. П. Харьков: Золотые страницы, 2005. 140 с.
- 12. Васильев А. Н. Научные вычисления в Microsoft Excel/ Васильев А. Н. М.: Издательский дом «Вильяме», 2004. 512 с.

INCREASE OF EFFICIENCY OF OPERATION OF THE SOURCE OF THERMAL ENERGY

D. A. KOVALJEV, graduate student

The question of increase of efficiency of operation of a source of thermal energy - a boilerhouse, at the expense of a choice of rational sizes of expenses of the heat-carrier for separate coppers are considered.

Поступила в редакцию 20.10 2010 г.