ИССЛЕДОВАНИЕ МАГНИТНОГО ПОЛЯ БЕСПАЗОВОГО ДВИГАТЕЛЯ ПОСТОЯННОГО ТОКА С МАГНИТОЭЛЕКТРИЧЕСКИМ ВОЗБУЖДЕНИЕМ ПРИ ХОЛОСТОМ ХОДЕ

Осташевский Н.А., к.т.н., проф., Иваненко В.Н., к.т.н., проф. Национальный технический университет "Харьковский политехнический институт" Украина, 61002, Харьков, ул. Фрунзе, 21, НТУ "ХПИ", кафедра "Электрические машины" тел. (057) 707-65-14, E-mail: vito@kpi.kharkov.ua

Ковган А.Н.

Открытое Акционерное общество завод "Потенциал" Украина, 61106, Харьков, ул. Индустриальная, 17, тел. (0572) 99-81-88, E-mail: kovgan@potencial.kharkov.com

Приведено результати розрахунку магнітного поля в поперечному перерізі безпазного двигуна постійного струму магнітоелектричного збудження з несиметричною магнітною системою при холостому ході. Досліджено вплив несиметрії магнітної системи та різних форм і розмірів постійних магнітів на розподіл магнітного поля двигуна.

Приведены результаты расчета магнитного поля в поперечном сечении беспазового двигателя постоянного тока магнитоэлектрического возбуждения с несимметричной магнитной системой при холостом ходе. Исследовано влияние несимметричности магнитной системы и различных форм и размеров постоянных магнитов на распределение магнитного поля двигателя.

ВСТУПЛЕНИЕ

Беспазовый двигатель постоянного тока с магнитоэлектрическим возбуждением разработан применительно к модулю электробура постоянного тока для бурения нефтяных и газовых скважин.

Беспазовое исполнение якоря принято для уменьшения величины реактивной ЭДС коммутируемых секций, а также снижения размагничивающего действия реакции якоря на постоянные магниты. Магнитоэлектрическое возбуждение на основе высококоэрцитивных редкоземельных магнитов типа Nd-Fe-B используется в связи с трудностью размещения обмотки возбуждения в межполюсном окне. Отсутствие одного добавочного полюса объясняется необходимостью размещения элементов токоподвода внутри корпуса (рис. 1).

Рис. 1. Поперечное сечение двигателя: 1 – станина; 2 – добавочный полюс; 3 – постоянный магнит;

4 – ферромагнитное основание главного полюса;

5 – обмотка якоря; 6 – беспазовый сердечник якоря

Магнитная система двигателя является несимметричной из-за отсутствия одного добавочного полюса. Целью расчета магнитного поля машины при холостом ходе является определение степени влияния несимметрии, форм и размеров магнитов на распределение магнитной индукции в зазоре, основного магнитного потока двигателя и потоков рассеяния главных полюсов. При расчете рассматривались две формы магнитов (рис. 2): с плоским основанием (магнит №1) и с равномерной высотой (магнит №2). Далее по тексту индексы 1 или 2, стоящие при переменных, будут определять эти переменные для форм магнитов №1 или №2 соответственно. Расчетный коэффициент полюсного перекрытия α_i , отнесенный к эквивалентному диаметру D_3 , согласно рекомендаций по проектированию электрических машин с постоянными магнитами был принят $\alpha_i=0,5$, чему соответствует ширина магнитов $b_m=56$ мм.

Эквивалентный диаметр определяется как [1]:

$$D_{\mathfrak{I}} = \frac{D_m - D_a}{\ln(D_m/D_a)},$$

где D_m – диаметр расточки главных полюсов; D_a – наружный диаметр сердечника якоря.

Расчет магнитного поля производился методом конечных элементов. Число узлов конечноэлементной сетки в среднем составляло 32000, число треугольных элементов – 64000, что позволило достаточно точно аппроксимировать геометрию двигателя. Точность решения составила не ниже 1.10⁻⁸. Среднее время расчета составило 10 мин.

При расчетах не учитывалось наличие дополнительных зазоров в магнитной цепи на стыках конструктивных элементов (постоянного магнита с ферромагнитным основанием, ферромагнитного основания со станиной, сердечника добавочного полюса со станиной и т.п.), выпучивание магнитного потока за внешнюю границу корпуса (станины) и в вал. Исходными данными для расчета являлись:

The second secon	
 наружный диаметр станины 	240 мм;
– внутренний диаметр станины	206 мм;
 наружный диаметр сердечника якоря 	136 мм;
 наружный диаметр якоря (с учетом не- 	
магнитного слоя)	147,5 мм;
 внутренний диаметр якоря 	85 мм;
- число главных полюсов	4;
 высота главного полюса 	28,25 мм;
 ширина главного полюса 	56 мм;
 число добавочных полюсов 	3;
 высота добавочного полюса 	28,25 мм;
 ширина добавочного полюса 	14 мм;
- высота наконечника добавочного полюса	1 мм;
– ширина наконечника добавочного полюса	17 мм.
Варьируемыми параметрами являлись:	

форма магнитов;

_	высота	постоянного	магнита

 высота ферромагнитного основания главного полюса

Под расчетным значением высоты магнитов $h_{\rm M}$ понимается значение, взятое по центру ширины магнита (рис.2). При расчете считалось, что магниты на-греваются до температуры 100°С.

 $h_{\rm M};$

 $h_{\Pi\Phi}$.

МДС магнита можно представить в виде:

$$F_{\rm M} = H_{\rm C} \cdot h_{\rm M}$$

где H_c – коэрцитивная сила магнита, которую можно считать постоянной для данного материала магнита при заданной расчетной температуре.

Учитывая большую длину немагнитного слоя двигателя (с учетом обмотки якоря $\delta_{\rm H} = 6,75\,$ мм) и большую магнитную проницаемость стальных участков ($\mu_{\rm CT} \approx \infty$), пренебрегаем изменением длин магнитных силовых линий в ферромагнитных основаниях главных полюсов при изменении высоты магнитов. Это допущение позволило считать магнитные системы при разных $h_{\rm M}$ эквивалентными и получить магнитную характеристику двигателя $\Phi_{\delta} = f(F_{\rm M}) = f(h_{\rm M})$. Высота магнитов $h_{\rm M}$ изменялась в пределах 2÷21 мм.

ВЛИЯНИЕ РАЗМЕРОВ И ФОРМ ПОСТОЯННЫХ МАГНИТОВ НА РАСПРЕДЕЛЕНИЕ МАГНИТНОГО ПОЛЯ В ЗАЗОРЕ ДВИГАТЕЛЯ

Картины магнитного поля машины при холостом ходе для двух форм магнитов представлены на рис. 3 и рис. 4, кривые распределения магнитной индукции в зазоре B_{δ} , нормальной составляющей индукции B_n и тангенциальной B_t показаны на рис. 5 – 7 (где кривые 1 соответствуют $h_{\rm M} = 21$ мм, $2 - h_{\rm M} = 15$ мм и $3 - h_{\rm M} = 6$ мм). Кривые распределения соответствуют середине воздушного зазора между расточкой главных полюсов и наружным диаметром якоря (с учетом немагнитного слоя).

При изучении кривых распределения магнитной индукции в зазоре машины (рис. 5) можно сделать следующие выводы:

1) в кривых распределения B_{δ} имеются местные всплески, возникающие под краями магнитов, причем с уменьшением $h_{\rm M}$ они становятся более выраженными. Наличие этих всплесков объясняется, в первую очередь, пикообразным изменением тангенциальной составляющей магнитной индукции B_t (рис. 6). B_t имеет место на всем полюсном делении и представляет собой два резко выраженных всплеска различного знака по краям магнита, снижающихся практически до нуля под центрами главного и добавочных полюсов.

а) магниты $\overline{Ne1}$, $h_{\rm M} = 15$ мм б) магниты $\overline{Ne2}$, $h_{\rm M} = 15$ мм Рис. 3. Цветовая карта распределения магнитной индукции

а) магниты №1, h_м = 15 мм
 б) магниты №2, h_м = 15 мм
 Рис. 4. Картина магнитных силовых линий

Отношение амплитуды тангенциальной составляющей к максимальному значению нормальной составляющей магнитной индукции $B_{t \max}/B_{n \max}$ изменяется в среднем от 0,8 до 0,6 с ростом высоты магнитов $h_{\rm M}$ от 2 до 21 мм. Уменьшение всплесков в кривой B_{δ} с увеличением $h_{\rm M}$ объясняется ростом удельного веса нормальной составляющей;

2) уменьшение *h*_м для магнитов №1 приводит к появлению провалов в кривой распределения B_{δ} под центрами главных полюсов (рис. 5а кривая 3). Эти провалы вызываются седлообразным распределением нормальной составляющей В_n (рис. 9). Такой вид кривой В_n объясняется неравномерностью МДС магнитов *F*_м вдоль расточки главных полюсов. Так уменьшение *h*_м приводит к росту отношения между высотой магнита под краем полюса $h_{\rm MK}$ (рис. 2а) и по центру – $h_{\rm M}$. При этом при $h_{\rm MK}/h_{\rm M}>2$, провалы в кривой B_n могут достигать $0.5B_{n \max}$. Это нежелательно, так как может привести к увеличению добавочных потерь в обмотке якоря от вихревых токов. При $h_{\rm MK}/h_{\rm M} \approx 1.5$ распределение B_n под полюсом становится практически прямоугольным, а с дальнейшим уменьшением отношения $h_{\rm MK}/h_{\rm M}$ B_n практически повторяет форму распределения для магнитов №2 (рис. 7);

3) малые значения $h_{\rm M}$ для магнитов №1 при $h_{\rm MK}/h_{\rm M} > 1,5$ приводят также и к возникновению пульсаций B_t под центрами главных полюсов (рис. 6а кривая 3), что также может привести к увеличению добавочных потерь в обмотке якоря от вихревых токов.

Важно заметить, что с ростом отношения $h_{\rm MK}/h_{\rm M}$ величина пульсаций значительно возрастает и может достигать $0,7B_{t\,\rm max}$. Однако, с ростом $h_{\rm M}$ и соответственно уменьшением $h_{\rm MK}/h_{\rm M}$ эти пульсации практически исчезают, и характер распределения B_t в зазоре мало отличается от распределения B_t для исполнения с магнитами №2. При равных $h_{\rm M}$ величина $B_{t\,\rm max1}$ незначительно больше $B_{t\,\rm max2}$, и с ростом $h_{\rm M}$

это различие снижается, а при $h_{\rm MK}/h_{\rm M}$ < 1,3 кривые для B_{t1} и B_{t2} практически совпадают.

Кривые распределения B_n , B_t и B_δ на полюсном делении для двух форм магнитов при номинальном значении основного магнитного потока ($\Phi_{\delta 1} = \Phi_{\delta 2} = \Phi_{\delta H}$) представлены на рис. 8.

ВЛИЯНИЕ ФОРМ И РАЗМЕРОВ ПОСТОЯННЫХ МАГНИТОВ НА ОСНОВНОЙ МАГНИТНЫЙ ПОТОК И ПОТОКИ РАССЕЯНИЯ

В структуре распределения магнитных силовых линий в поперечном сечении двигателя при холостом ходе (рис. 10) можно выделить следующие магнитные потоки: основной магнитный поток Φ_{δ} , поток рассеяния на станину $\varPhi_{\text{ост}}$, поток рассеяния на ферромагнитное основание $\Phi_{\rm orn}$ и поток рассеяния на добавочный полюс $\Phi_{\sigma д n}$. Часть магнитных линий, выходящих из боковых граней магнитов, замыкаются на сами магниты. Учитывая малость значений этих потоков рассеяния, они не рассматривались отдельно, а учитывались при расчетах как часть потоков $\Phi_{\rm orn}$. Необходимо отметить, что из-за большого немагнитного зазора и отсутствия одного добавочного полюса, часть магнитных силовых линий замыкается между главными полюсами А и D. Эти потоки рассеяния рассматривались при расчете коэффициентов рассеяния главных полюсов в составе $\Phi_{\text{сли}}$.

Рис. 10. Картина магнитных потоков

При расчете основного потока Φ_{δ} учитывались следующие потоки, проникающие в сталь якоря: поток под полюсной дугой $\Phi_{\delta p}$ (радиальный поток магнита) и поток «выпучивания» линий поля за пределами полюсной дуги $\Phi_{\delta \delta}$ (полезный поток боковых граней магнита).

Исследование магнитных полей при одинаковой высоте $h_{\rm M}$ и разных формах магнитов позволило сделать вывод: при выполнении двигателя с магнитами №1 величина Φ_{δ} повышается по сравнению с исполнением с магнитами №2 и составляет в среднем $\Phi_{\delta 1} \approx (1,13...1,015) \Phi_{\delta 2}$ при изменении $h_{\rm M}$ от 6 до 21 мм.

Повышенные значения $\Phi_{\delta 1}$ объясняются увеличенными поперечными сечениями магнитов №1 в сравнении с магнитами №2, что ясно из рис. 2а. С ростом $h_{\rm M}$ отношение площадей поперечных сечений магнитов №1 и №2 уменьшается, что и приводит к уменьшению различия между $\Phi_{\delta 1}$ и $\Phi_{\delta 2}$.

Величина $\Phi_{\delta\delta}$ для двух форм магнитов составляет:

$$\Phi_{\delta \delta 1} = (0,04...0,06) \cdot \Phi_{\delta 1}$$
и

$$\Phi_{\delta 62} = (0,024...0,058) \cdot \Phi_{\delta 2}$$

при изменении $h_{\rm M}$ от 6 до 21 мм.

При холостом ходе без учета размагничивающего действия реакции якоря для обеспечения номинального значения расчетного полезного потока $\Phi_{\delta H} = 20 \cdot 10^{-3}$ Вб (что соответствует номинальной частоте вращения $n_{\rm H} = 700$ об/мин), $h_{\rm M}$ составит: для магнитов №1 – 11 мм, для магнитов №2 – 12,5 мм. При этом объем магнитов получается практически одинаковым для обеих форм магнитов и составляет для одного магнита 386,7 см³.

В целом можно отметить, что при равных $h_{\rm M}$ рассеяние магнитов №1 больше магнитов №2, что значительно выражено при малых значениях $h_{\rm M}$. Это объясняется увеличенным значением высоты боковых граней магнитов $h_{\rm MK}$ по сравнению с боковыми гранями магнитов №2. Отношение $\Sigma \Phi_{\sigma 1} / \Sigma \Phi_{\sigma 2}$ изменяется в пределах 1,7÷1,06 при изменении $h_{\rm M}$ от 2 до 21 мм.

Расчеты результирующих коэффициентов рассеяния σ главных полюсов производились согласно выражению:

$$\sigma = \frac{\Phi_{\delta} + \Phi_{\sigma cr} + \Phi_{\sigma rr} + \Phi_{\sigma dr}}{\Phi_{\delta}}$$

Расчетные значения основных потоков, потоков рассеяния и коэффициентов рассеяния для разных значений $h_{\rm M}$ и форм магнитов приведены в таблице.

Магнитные характеристики $\Phi_{\delta} = f(h_{\rm M})$ двигателя при разных формах магнитов представлены на рис. 11.

На рис. 12 показаны зависимости коэффициентов рассеяния главных полюсов от высоты магнитов при разных формах магнитов.

Как видно из рис. 12 зависимость $\sigma = f(h_{\rm M})$ имеет некоторый минимум. Повышенные значения σ в зоне малых $h_{\rm M}$ объясняется возрастанием удельного веса потоков рассеяния $\Phi_{\sigma \Pi}$, а при повышенных значениях $h_{\rm M}$ – удельного веса потоков рассеяния $\Phi_{\sigma {\rm CT}}$. Потоки рассеяния $\Phi_{\sigma {\rm д}\Pi}$ при изменении $h_{\rm M}$ изменяются в небольших пределах (см. табл.).

Рис. 12. Зависимость коэффициентов рассеяния главны: полюсов σ_{гп} = f(h_M) при разных формах магнитов 1 – магниты №1; 2 – магниты №2

ВЛИЯНИЕ ОТСУТСТВИЯ ОДНОГО ДОБАВОЧНОГО ПОЛЮСА НА РАСПРЕДЕЛЕНИЕ МАГНИТНОГО ПОЛЯ ПРИ ХОЛОСТОМ ХОДЕ

Отсутствие одного добавочного полюса при холостом ходе приводит к незначительному различию основных потоков полюсов, находящихся в разных магнитных условиях, незначительному искажению распределения магнитной индукции в зазоре машины (рис. 5-7) и изменению структуры рассеяния главных полюсов.

В целом можно отметить, что имеется симметрия в распределении магнитного поля при холостом ходе. Ось симметрии проходит через добавочный полюс *b* и середину расстояния между полюсами *A* и *D*.

Можно выделить две различные группы главных полюсов, качественно отличающиеся структурой рассеяния: первая группа – полюса находящиеся между двумя соседними добавочными полюсами (полюса *B* и *C*) и вторая группа – полюса граничащие с одним добавочным полюсом (*A* и *D*). При расчете основных потоков и коэффициентов рассеяния главных полюсов рассматривались полюса каждой группы. Ввиду симметрии распределения магнитного поля были рассмотрены полюса *В* и *D*. Результаты расчетов для двух форм магнитов сведены в таблицу.

Из расчета магнитного поля можно сделать выводы:

1) основные магнитные потоки Φ_{δ} главных полюсов *A* и *D*, граничащих с зоной отсутствия добавочного полюса, незначительно больше по сравнению с полюсами *B* и *C* и этим различием можно пренебречь.

В виду пренебрежительно малого различия основных потоков главных полюсов в таблице приведены средние значения Φ_{δ} для обеих групп полюсов;

2) коэффициенты рассеяния главных полюсов первой группы (полюсов *B* и *C*) получаются больше коэффициентов рассеяния полюсов второй группы (*A* и *D*). Очевидно, из-за отсутствия добавочного полюса уменьшается магнитная проводимость потокам рассеяния боковых граней магнитов полюсов *A* и *D*, граничащих с зоной отсутствия добавочного полюса. В свою очередь это приводит к уменьшению $\Phi'_{\sigma ст}$ (рис. 10) и к незначительному увеличению Φ_{δ} для этих полюсов;

3) отсутствие одного добавочного полюса приводит к перераспределению составляющих потоков рассеяния не только магнитов второй группы, но и первой группы. Это в свою очередь – к количественному различию ($\Phi_{\sigma i} \, u \, \Phi'_{\sigma i}$, см. рис. 10); где индекс *i* означает конкретную составляющую потока рассеяния; знак «'» введен для различия частичных потоков рассеяния боковых граней магнитов. В целом, для магнитов первой группы, можно отметить $\Sigma \Phi_{\sigma i} = \Sigma \Phi'_{\sigma i}$.

	Таблиц															блица			
Форма магнитов №1									Форма магнитов №2										
h _м , мм	${\it \Phi}_{\delta}$, Вб	$\frac{\Phi_{\text{oct}}}{\Phi_{\delta}}$.		$\frac{\Phi_{c}}{\Phi}$	$rac{ \Phi_{_{\mathrm{GTII}}} }{ \Phi_{_{\!\delta}} } \left rac{ \Phi_{_{\!\mathrm{GДII}}} }{ \Phi_{_{\!\delta}} } ight $		σ		<i>h</i> _м , мм		$\frac{\Phi_{\scriptscriptstyle \mathrm{\sigma cr}}}{\Phi_{\scriptscriptstyle \delta}}$		$rac{arPsi_{ m sfill}}{arPsi_{ m d}}$		$rac{arPsi_{ ext{σдп}}}{arPsi_{\delta}}$		σ		
		%				1				0	Φ_{δ} , Вб			9	6	1			
		полюса		полюса		полюса		полюса			полюса		полюса		полюса		полюса		
		B	D	B	D	B	D	B	D			B	D	B	D	B	D	B	D
2	0,010366	1,85	2,07	9,07	9,02	1,98	1,48	1,129	1,126	2	0,006573	0,67	0,67	10,46	10,31	0,81	0,62	1,119	1,116
6	0,016300	2,54	2,91	5,80	5,53	2,20	1,66	1,105	1,101	6	0,014430	1,21	1,57	6,90	6,63	1,85	1,26	1,100	1,095
11	0,020000	3,71	4,23	4,20	4,15	2,61	1,99	1,105	1,104	12,5	0,020000	3,05	3,31	5,38	5,21	2,16	1,67	1,106	1,102
15	0,021800	5,26	5,59	3,35	3,06	2,86	2,13	1,115	1,108	15	0,021120	4,01	4,27	4,37	4,30	2,72	2,00	1,111	1,106
21	0,023350	8,11	8,67	1,43	1,34	3,16	2,42	1,127	1,124	21	0,023000	6,56	6,73	2,73	2,70	2,90	2,43	1,122	1,119

РЕКОМЕНДАЦИИ-ВЫВОДЫ

Из расчета магнитного поля двигателя при холостом ходе при двух формах магнитов можно заключить следующее:

1) при малых значениях высоты магнитов $h_{\rm M}$, что характерно для машин с малым воздушным зазором, т.е. зубчатым якорем, применение формы магнитов №1 не рекомендуется. Это может повлечь за собой появление пульсаций магнитной индукции в воздушном зазоре, что в свою очередь может привести к увеличению добавочных потерь, снижению КПД, повышению нагрева, осложнению коммутации и т.п.;

2) при больших по расчету $h_{\rm M}$, когда отношение

 $h_{\rm MK}/h_{\rm M}$ ≤ 1,5 рекомендуется применение формы магнитов №1, так как она является более технологичной, что в свою очередь снижает стоимость изготовления машины.

Для более глубокого исследования влияния формы магнитов на распределение магнитного поля двигателя необходимы дополнительные исследования при нагрузке.

ЛИТЕРАТУРА:

 Бочаров В. И. Беспазовые тяговые электродвигатели постоянного тока. М., "Энергия", 1976. – 192 с. Поступила 03.11.2004