РАСЧЕТ ПОЛЯРИЗОВАННОЙ МАГНИТНОЙ ЦЕПИ ВЫХОДНОГО РЕЛЕ ДЛЯ ПОЛУПРОВОДНИКОВОГО РАСЦЕПИТЕЛЯ АВТОМАТИЧЕСКОГО ВЫКЛЮЧАТЕЛЯ

Середа А.Г., к.т.н., доц., Фетюхина Е.В. Национальный технический университет "Харьковский политехнический институт" Украина, 61002, Харьков, ул. Фрунзе, 21, НТУ "ХПИ", кафедра "Электрические аппараты" тел. (0572) 707-68-64

Розглядається можливість застосування поляризованих магнітних систем у складі вихідного реле напівпровідникового розчеплювача для малогабаітних струмообмежуючих автоматичних вимикачів типу ВА.

Рассмотрена возможность применения поляризованных магнитных систем в конструкциях выходного реле полупроводникового расцепителя для малогабаритных токоограничивающих автоматических выключателей серии ВА.

Интенсивное развитие микроэлектронной и микропроцессорной техники и цифровых технологий позволило создать автоматические выключатели с принципиально новым подходом к построению защитных характеристик. На смену существовавшим многие десятилетия автоматическим выключателям с тепловой и электромагнитной защитой пришли аппараты, оснащенные полупроводниковыми расцепителями. Полупроводниковый расцепитель (РП) позволяет не только обеспечить надежную быстродействующую защиту кабельного хозяйства, электродвигателя, трансформатора, или полупроводникового преобразователя, но и организовать селективную защиту электрооборудования большого предприятия.

Конструктивно РП состоит из микроконтроллерного блока управления полупроводниковым расцепителем (БУРП), измерительных трансформаторов тока (ТТ), выходного исполнительного реле. ТТ производят измерение тока в защищаемой цепи. БУРП обрабатывает информацию с ТТ и управляет выходным реле. Выходное реле воздействует на отключающую рейку механизма свободного расцепления автоматического выключателя, что приводит к размыканию главных контактов и прекращению аварийного режима. В автоматических выключателях серии А3700 используется БУРП аналогового типа [1, 2]. Мощности аналогового сигнала в большинстве случаев достаточно, чтобы в качестве выходного реле использовать электромагниты клапанного типа [3]. Микроконтроллерный БУРП оперирует цифровыми сигналами небольшой мощности, что затрудняет использование клапанных электромагнитов. В этой связи ряд передовых европейских фирм по разработке и производству автоматических выключателей перешли на использование более чувствительных поляризованных электромагнитов. В данной работе рассмотрен расчет поляризованной магнитной системы, применение которой возможно в выходном реле для полупроводниковых расцепителей автоматических выключателей малогабаритных серий: ВА51, ВА57, ВА59.

Поляризованные электромагнитные реле имеют ряд преимуществ по сравнению с нейтральными:

 выходной параметр (положение якоря) зависит от полярности управляющего импульса, что расширяет функциональные возможности реле;

- высокая чувствительность и высокий коэффициент усиления по мощности;
- управляются кратковременными импульсами тока;
- замкнутое состояние магнитной системы сохраняется после окончания управляющего импульса, что позволяет использовать реле как элемент памяти;
- после срабатывания не потребляется мощность для удержания якоря в притянутом положении;
- за счет положения упоров можно осуществлять однопозиционную, нейтральную и двухпозиционную настройку реле.

Рассмотрим поляризованный электромагнит (рис. 1). Поляризующий поток, создаваемый постоянным магнитом 5, создает электромагнитную силу, удерживающую якорь 3 в притянутом положении к левой части скобы 1. Сила поляризующего потока направлена навстречу действию возвратной пружины 4. Электромагнитная сила основного потока, создаваемого обмоткой 2, действует согласно с силой пружины 4 и стремится освободить якорь. Когда суммарная сила пружины 4 и основного потока сравняется с силой поляризующего потока, якорь 3 переместится под действием пружины 4 до упора 6 и приведет к автоматическому отключению выключателя. Благодаря поляризующему потоку направление электромагнитной силы, действующей на якорь 3, изменяется в зависимости от направления тока в обмотке 2.

Рис. 1. Эскиз поляризованного электромагнита

Величина поляризующего потока определяется магнитодвижущей силой (МДС) постоянных магнитов, которая в свою очередь зависит от высоты магнита $h_{\rm M}$. Целью расчетов, результаты которых приведе-

ны в данной работе, является определение требуемой высоты постоянных магнитов, обеспечивающей надежное притянутое положение якоря.

На рис. 2 показан эскиз магнитной системы реле.

Рис. 2. Магнитная система: 1 – скоба; 2 – постоянный магнит; 3 – полюс; 4 – узкая часть якоря; 5 – широкая часть якоря

Для определения магнитного потока в рабочем зазоре, между якорем 4 и полюсным наконечником 3, составим схему замещения магнитной системы (рис. 3).

Рис. 3. Схема замещения электромагнита

На рис. 3 обозначено:

 $\Lambda_{\rm p}\,$ - проводимость рабочего зазора;

Λ_п - проводимость полюсного наконечника 3;

- Λ_{н1} проводимость нерабочего зазора между полюсным наконечником 3 и скобой 1;
- Λ_{н2} проводимость нерабочего зазора между якорем 5 и постоянным магнитом 2;
- Λ_{н3} проводимость нерабочего зазора между постоянным магнитом 2 и скобой 1;
- $\Lambda_{\mathfrak{s}}\,$ проводимость якоря 4;
- Λ_{шя1} проводимость широкой части якоря 5 на горизонтальном участке;
- Л_{шя2} проводимость широкой части якоря 5 на вертикальном участке;

 Λ_{ck1} , Λ_{ck2} - проводимости участков скобы 1;

В качестве исходных данных принимаем известные технические характеристики и параметры автоматических выключателей с пружинным приводом главных контактов.

Q = 80 H - сила, удерживающая якорь, численно рав-

ная силе возвратной пружины 4 в сжатом состоянии;

 $a_{\rm ck} = 10^{-3}$ м, $b_{\rm ck} = 2 \cdot 10^{-2}$ м – соответственно толщина и ширина скобы 1;

 $L_{g} = 15 \cdot 10^{-3}$ м, $d_{g} = 7 \cdot 10^{-3}$ м – длина и диаметр узкой части 4 якоря;

 $L_{c\kappa 1} = 3 \cdot 10^{-2}$ м, $L_{c\kappa 2} = 1.2 \cdot 10^{-2}$ м – длины участков скобы 1;

 $L_{\rm II} = 5 \cdot 10^{-3}$ м – длина полюсного наконечника;

 $L_{\text{шя1}} = 5 \cdot 10^{-3} \text{ м}$ — длина силовой линии в широкой части 5 якоря;

 $\delta_{\rm H1} = 0.2 \cdot 10^{-3} \,\text{m}$ — высота нерабочего зазора между полюсным наконечником и скобой;

 $\delta_{H2} = 1.5 \cdot 10^{-3}$ м – высота нерабочего зазора между широкой частью якоря и постоянным магнитом;

 $\delta_{\rm H3} = 0,2 \cdot 10^{-3}$ м – высота нерабочего зазора между постоянным магнитом и скобой;

 $\delta_{\rm p} = 0.2 \cdot 10^{-3} \, {\rm m}$ – высота рабочего зазора между полюсным наконечником и якорем;

 $a_{\rm M} = 10^{-2}$ м, $b_{\rm M} = 2 \cdot 10^{-2}$ м – длина и ширина постоянного магнита.

Требуемую высоту $h_{\rm M}$ постоянных магнитов определим, рассчитав зависимость электромагнитной силы в рабочем зазоре в функции $h_{\rm M}$: $Q = f(h_{\rm M})$. При изменении высоты магнита следует изменять и диаметр широкой части якоря $d_{\rm ШЯ}$, потому что воздушный зазор между якорем и постоянным магнитом нерабочий и должен быть минимальным, чтобы иметь максимальную проводимость магнитного потока.

Рассчитаем проводимости, показанные на рис. 3.

Проводимость воздушного зазора межу скобой и полюсным наконечником:

$$\Lambda_{\rm H1} = \frac{\mu_0 \cdot \pi \cdot d_{\pi}^2}{4 \cdot \delta_{\rm H1}},\tag{1}$$

где $\mu_0 = 4\pi \cdot 10^{-7} \, \Gamma$ н/м – магнитная постоянная.

Проводимость воздушного зазора межу широкой частью якоря и постоянным магнитом, учитывая линии искривления потока:

$$\Lambda_{\rm H2} = \frac{\mu_0 \left(3,18 + 0,22n - \frac{0.56 - 0.5n}{\beta} \right)}{\sqrt{n}} \cdot 2L_{\rm III \, s1} \,, \quad (2)$$

где *n*, β – коэффициенты учитывающие искривление линий потока.

$$n = \frac{a_0}{d_{\text{IIIR}}},\tag{3}$$

где *a*₀ – кратчайшее расстояние между постоянным магнитом и широкой частью якоря.

$$a_0 = L_{\rm cK2} - a_{\rm cK} - \frac{d_{\rm IIII}}{2} - h_{\rm M}; \qquad (4)$$

$$\beta = \frac{b_{\rm CK}}{d_{\rm III9}} \,. \tag{5}$$

Проводимость воздушного зазора межу скобой и постоянным магнитом:

$$\Lambda_{\rm H3} = \frac{\mu_0 \cdot a_{\rm M} \cdot b_{\rm M}}{\delta_{\rm H3}} \,. \tag{6}$$

Проводимость рабочего зазора:

$$\Lambda_{\rm p} = \frac{\mu_0 \cdot \pi \cdot d_{\rm g}^2}{4 \cdot \delta_{\rm p}} \,. \tag{7}$$

Проводимость постоянного магнита определим для трех наиболее распространенных сплавов: 1. Алюминий-никель-кобальт 5 (AlNiCo-5):

- $B_r = 0.95$ Тл; $H_c = 60$ кА/м.
- Алюминий-никель-кобальт 8 (AlNiCo-8);
 B_r = 0.95 Тл; H_c = 110 кА/м.
- 3. Феррит бария: B_r = 0.35 Тл; H_c = 200 кА/м.

Зная коэрцитивную силу H_c и остаточную индукцию B_r каждого из этих металлов, определим их магнитные проницаемости:

• для феррита бария:

$$\mu_{\rm M1} = \frac{B_{r1}}{H_{c1}} = \frac{0.35}{200 \cdot 10^3} = 1.75 \cdot 10^{-6};$$

• для AlNiCo-5:

$$\mu_{M2} = \frac{B_{r2}}{H_{c2}} = \frac{0.95}{60 \cdot 10^3} = 1.58 \cdot 10^{-5};$$

• для AlNiCo-8:

$$\mu_{\rm M3} = \frac{B_{r3}}{H_{c3}} = \frac{0.95}{110 \cdot 10^3} = 0.86 \cdot 10^{-5}$$

Проводимость постоянного магнита:

$$\Lambda_{\rm Mi} = \frac{\mu_{\rm Mi} \cdot a_{\rm M} \cdot b_{\rm M}}{h_{\rm M}} \,, \tag{8}$$

где индекс і означает тип сплава.

Поток в рабочем зазоре:

$$\Phi_{\rm p} = \Phi_1 + \Phi_2 = 2 \cdot \Phi_1 \,, \tag{9}$$

где $\Phi_1 = \Phi_2$ – потоки, создаваемые магнитами левой и правой ветви магнитной системы (рис. 3).

МДС, действующая в каждом контуре, равна сумме падений магнитных напряжений в нем:

$$H_{ci} \cdot h_{\rm M} = H_{\rm c\kappa} \left(L_{\rm c\kappa 1} + L_{\rm c\kappa 2} \right) + \frac{\Phi_{\rm p}}{\Lambda_{\rm H1}} + H_{\rm \pi} L_{\rm \pi} + \frac{\Phi_{\rm p}}{\Lambda_{\rm p}} + H_{\rm \pi} L_{\rm \pi} + H_{\rm m\pi 1} L_{\rm m\pi 1} + , \qquad (10)$$

$$+H_{\rm III 32}L_{\rm III 32}+\frac{\varphi_{\rm l}}{\Lambda_{\rm H2}}+\frac{\varphi_{\rm l}}{\Lambda_{\rm H3}}+\frac{\varphi_{\rm l}}{\Lambda_{\rm Mi}}$$

Выразим поток Φ_1 из (9) и подставим в (10):

$$H_{ci} \cdot h_{\rm M} - H_{c\kappa} \cdot (L_{c\kappa 1} + L_{c\kappa 2}) - H_{\rm II} \cdot L_{\rm II} - \frac{\Phi_{\rm I}}{2} \left(\frac{1}{\Lambda_{\rm H1}} + \frac{1}{\Lambda_{\rm p}} \right) - \Phi_{\rm I} \left(\frac{1}{\Lambda_{\rm H2}} + \frac{1}{\Lambda_{\rm H3}} + \frac{1}{\Lambda_{\rm Mi}} \right) - , \quad (11)$$
$$-H_{\rm usl} \cdot L_{\rm usl} - H_{\rm usl} \cdot L_{\rm usl} - H_{\rm sc} \cdot L_{\rm sc} = 0$$

Выразим все слагаемые через одну переменную – индукцию якоря B_{g} .

$$\Phi_{\rm l} = B_{\rm g} \cdot \frac{\pi \cdot d_{\rm g}^2}{4} ; \qquad (12)$$

$$B_{\rm cK} = \frac{\Phi_{\rm l}}{2 \cdot a_{\rm cK} \cdot b_{\rm cK}} = B_{\rm g} \cdot \frac{\pi \cdot d_{\rm g}^2}{8 \cdot a_{\rm cK} \cdot b_{\rm cK}}; \qquad (13)$$

$$B_{\Pi} = \frac{4 \cdot \Phi_{\rm l}}{\pi \cdot d_{\rm g}^2} = B_{\rm g}; \qquad (14)$$

$$B_{\text{III}\mathfrak{g}1} = \frac{4 \cdot \Phi_1}{\pi \cdot d_{\text{III}\mathfrak{g}}^2} = B_{\mathfrak{g}} \cdot \frac{d_{\mathfrak{g}}^2}{d_{\text{III}\mathfrak{g}}^2}; \qquad (15)$$

$$B_{\text{IIIR2}} = \frac{\Phi_1}{d_{\text{IIIR1}} \cdot L_{\text{IIIR1}}} = B_R \cdot \frac{\pi \cdot d_R^2}{4 \cdot d_{\text{IIIR1}} \cdot L_{\text{IIIR1}}} \,. \tag{16}$$

Определим напряженность поля на каждом участке цепи для наиболее распространенной марки стали 20:

$$H_{c\kappa} = 20 \cdot \left(1 + 9 \cdot e^{10 \cdot (1 - B_{c\kappa})} \right) \cdot B_{c\kappa}^{10}; \qquad (17)$$

$$H_{\Pi} = 20 \cdot \left(1 + 9 \cdot e^{10 \cdot (1 - B_{\Pi})}\right) \cdot B_{\Pi}^{10}; \qquad (18)$$

$$H_{\mathfrak{g}} = 20 \cdot \left(1 + 9 \cdot e^{10 \cdot (1 - B_{\mathfrak{g}})} \right) \cdot B_{\mathfrak{g}}^{10}; \tag{19}$$

$$H_{\rm III32} = 20 \cdot \left(1 + 9 \cdot e^{10 \cdot (1 - B_{\rm III32})}\right) \cdot B_{\rm III32}^{10}; \quad (21)$$

Изменяя $B_{\rm g}$ в пределах 0÷1.5 Тл, строим зависимость (11) в функции $B_{\rm g}$. Из графика находим значение индукции, при котором уравнения (11) верно. По значению индукции $B_{\rm g}$ для каждого сплава, определяем значение потока $\Phi_{\rm l}$.

$$\Phi_{1i} = B_{\mathfrak{R}i} \cdot \frac{\pi \cdot d_{\mathfrak{R}}^2}{4} \,. \tag{22}$$

Сила, действующая на якорь:

$$Q_i = \frac{\Phi_{li}}{\Lambda_p}.$$
 (23)

Результаты расчета для различных сплавов постоянных магнитов сведены в табл. 1 - 4.

Таблица 1

Результаты расчетов при высоте магнита $h_{M} = 1$ мм

	AIN1Co-5	AIN1C0-8	Феррит бария
$d_{\rm шя}$, м	0.0168		
$\Lambda_{\rm H1}$, Гн	$0.242 \cdot 10^{-6}$		
$\Lambda_{{ m H}2}$, Гн	0.109.10-6		
$\Lambda_{{ m H}3}$, Гн	0.126.10-5		
$\Lambda_{ m p}$, Гн	0.242.10-6		
Λ_{M} , Гн	0.35.10-5	0.173.10-5	0.317.10-5
<i>В</i> _я , Тл	0.11642	0.21138	0.35413
$\Phi_{\rm l}$, Вб	0.448.10-5	0.813.10-5	1.363.10-5
<i>Q</i> , H	18.53	33.64	56.36

Електротехніка і Електромеханіка. 2006. №3

Таблица 2

Результаты расчетов при высоте магнита $h_{M} = 2$ мм

	AlNiCo-5	AlNiCo-8	Феррит бария
$d_{\rm IIIЯ}$, м	0.0148		
$\Lambda_{\rm H1}, \Gamma$ н	0.242.10-6		
$\Lambda_{{ m H}2}$, Гн	0.1051.10-6		
$\Lambda_{{ m H}3}$, Гн	0.126.10-5		
Λ_{p} , Гн	0.242.10-6		
$\Lambda_{_{\rm M}}$, Гн	0.158.10-5	0.864.10-6	0.175.10-6
<i>В</i> _я , Тл	0.22686	0.407305	0.631785
<i>Ф</i> ₁ , Вб	0.873.10-5	1.567.10-5	2.43.10-5
<i>Q</i> , H	36.11	65.82	100.54

Таблица 3

Результаты расчетов при высоте магнита $h_{M} = 3$ мм

	AlNiCo-5	AlNiCo-8	Феррит бария
$d_{\rm III m S}$, м	0.0128		
$\Lambda_{\rm H1}, \Gamma$ н	0.242.10-6		
$\Lambda_{{ m H}2}$, Гн	0.998.10-7		
$\Lambda_{{ m H}3}$, Гн	0.126.10-5		
Λ_{p} , Гн	0.242.10-6		
$\Lambda_{_{\mathrm{M}}}$, Гн	0.106.10-5	0.576.10-6	0.117·10 ⁻⁶
<i>В</i> _я , Тл	0.33031	0.58423	0.85392
$\Phi_{\rm l}$, Вб	1.27.10-5	2.25.10-5	3.28.10-5
<i>Q</i> , H	52.57	95.98	135.9

Таблица 4

2			Jn
	AlNiCo-5	AlNiCo-8	Феррит бария
$d_{\mathrm{IIIЯ}}$, м	0.0108		
$\Lambda_{\rm H1}, \Gamma$ н	0.242.10-6		
$\Lambda_{{ m H2}}, \Gamma{ m H}$	0.937.10-7		
$\Lambda_{{ m H}3},\Gamma{ m H}$	0.126.10-5		
Λ_{p} , Гн	0.242.10-6		
Λ_{M} , Гн	0.792.10-6	0.432.10-6	0.875.10-6
$B_{\mathfrak{A}}$, Тл	0.42504	0.742018	1.03757
$\Phi_{\rm l}$, Вб	1.636.10-5	2.856.10-5	3.993·10 ⁻⁵
Q,H	67.647	118.09	165.134

Результаты расчетов при высоте магнита $h_{\mu} = 4$ мм

По результатам расчетов построим зависимость $Q = f(h_{\rm M})$ для трех типов сплавов (рис. 4).

Рис. 4. Зависимость электромагнитной силы в рабочем зазоре в функции высоты постоянного магнита: 1 – феррит бария; 2 – AlNiCo-5; 3 – AlNiCo-8

Из этого графика видно, что при требуемой силе 80H мы можем применить только сплав AlNiCo-8. Если использовать AlNiCo-5, то высота постоянного магнита оказывается слишком большой, чтобы поместиться в ограниченном объеме реле. Если использовать феррит бария, то высота постоянного магнита оказывается слишком маленькой $h_{\rm M} = 1.5$ мм. Постоянный магнит такой высоты сложно изготовить. По этой же причине не рассматривались магнитные материалы, обладающие большей коэрцитивной силой, чем феррит бария (ниодим-железо-бор и самарийкобальт). Постоянные магниты из этих материалов имели высоту менее 1мм.

выводы

1. Проведенные расчеты доказали возможность применения поляризованных магнитных систем в качестве выходного реле полупроводниковых расцепителей автоматических выключателей.

2. Оптимальным с точки зрения высоты постоянного магнита является материал AlNiCo-8.

3. Для выходного реле полупроводникового расцепителя автоматических выключателей серии ВА требуемая высота магнита из материала AlNiCo-8 должна равняться $h_{\rm M} = 2.5$ мм.

ЛИТЕРАТУРА

- [1] Могилевский Г.В., Райнин В.Е., Сосков А.Г., Устименко Б.Ю. Бесконтактные устройства защиты для низковольтных электрических аппаратов. М.: Энергия, 1971. – 88 с.
- [2] Могилевский Г.В., Райнин В.Е., Гребенник В.И. Полупроводниковые аппараты защиты. М.: Энергия, 1980. – 168 с.
- [3] Середа А.Г. Эффективное использование независимых расцепителей токоограничивающих автоматических выключателей // Електротехніка і електромеханіка. – Харків: НТУ "ХПІ", 2004. – №3. – С. 56-60.

Поступила 10.02.2006г.