МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ РОБОТИ КОАКСІАЛЬНО-ЛІНІЙНОГО СИНХРОННОГО ВІБРАТОРА УСТАНОВКИ ДЛЯ ПРОХОДКИ ГОРИЗОНТАЛЬНИХ СВЕРДЛОВИН

Голенков Г.М., к.т.н., доцент, Бондар Р.П., Київський національний університет будівництва і архітектури Україна, 03037, Київ, пр. Повітрофлотський 31, КНУБА, кафедра "Електротехніки та електроприводу" тел. (044) 241-55-65

Розглянуто питання, пов'язані із застосуванням лінійних синхронних вібраторів для безтраншейної проходки свердловин. Запропоновано конструкцію коаксіально-лінійного синхронного вібратора з постійними магнітами та математичну модель руху віброударної системи. Проведено дослідження впливу форми силового імпульсу на механічні параметри системи.

Рассмотрены вопросы, связанные с применением линейных синхронных вибраторов для бестраншейной проходки скважин. Предложена конструкция коаксиально-линейного синхронного вибратора с постоянными магнитами и математическая модель движения виброударной системы. Проведено исследование влияния формы силового импульса на механические параметры системы.

АКТУАЛЬНІСТЬ ПИТАННЯ

При прокладанні інженерних мереж, спорудженні нових чи реконструкції старих трубопроводів широко застосовуються два основних способи проведення робіт – відкритий і закритий.

Відкритий передбачає риття траншей, руйнування дорожнього покриття, зупинку руху транспорту тощо. Крім того, в умовах щільної міської забудови риття траншей ускладнено, а іноді й неможливо.

У світовій практиці досить широко застосовуються безтраншейні методи, а в деяких країнах (Великобританія, Німеччина, США, Франція, Японія) будівництво за траншейними технологіями заборонено стандартами і застосовується як виняток [1].

ПОСТАНОВКА ЗАДАЧІ

Безтраншейну прокладку трубопроводів виконують, в основному, способами проколу, продавлювання і буріння. Труднощі при спорудженні безтраншейних переходів методом проколу і продавлювання визначаються необхідністю прикладення значних статичних зусиль (150-4500 кН). В останньому випадку, крім того, виникає необхідність вилучення ґрунту з порожнини труби. Застосування вібраційної та віброударної технології дозволяє значно зменшити зусилля вдавлювання і збільшити швидкість проходки.

Найбільш поширені на сьогоднішній день дебалансні вібратори мають ряд недоліків: недовговічність дебалансних валів і підшипників (через значні динамічні навантаження); необхідність у синхронізації обертання дебалансів. Машини з гідроприводом потребують насосну станцію, шланги високого тиску, фільтри, що веде до подорожчання установки. Використання ударно-вібраційного пристрою на основі лінійного коаксіального синхронного вібратора виключає вищезгадані недоліки, а застосування постійних магнітів на основі нових рідкоземельних матеріалів (NdFeB, SmCo) дозволяє конструювати більш надійні та ефективні машини [2]. Метою роботи є розробка математичної моделі переміщення електродинамічної віброударної системи.

КОНСТРУКЦІЯ КОАКСІАЛЬНО-ЛІНІЙНОГО СИНХРОННОГО ВІБРАТОРА

Конструкція коаксіально-лінійного синхронного вібратора показана на рис. 1. Він містить циліндричний сталевий корпус 1, у якому жорстко закріплений статор 2 з феромагнітного матеріалу. Обмотки 3 статора мають живлення від джерела змінного струму 4 (перетворювач частоти). Елементи 2, 3 жорстко закріплені у корпусі 1. Стрижень 5 для зменшення втрати магнітної енергії виконаний із немагнітного матеріалу, встановлений співвісно із статором і має можливість коливатися відносно нього. Стрижень фіксується передньою 6 та задньою 7 кришками з підшипниками ковзання. Коаксіальна магнітна система якоря складається з постійних висококоерцитивних магнітів 8 типу NdFeB, що намагнічені у аксіальному напрямку і фіксуються у виточках стальних полюсів 9. Пружинна система вібратора складається з двох пружин 11,12. Натягування пружин здійснюється за допомогою диска 13, який може рухатися відносно шпильок 14 при обертанні регулювальних гайок 15. Шпильки вкручуються у задню кришку 7. Регулювання положення якоря відносно обмоток статора здійснюється за допомогою диска 16, який може обертатися по різьбі на стрижні 5. Пружинна система закривається кожухом 18. На стрижні 5 жорстко закріплений ударник 19.

Вібратор працює наступним чином. При подачі на обмотки статора змінного струму в них виникає намагнічуюча сила, яка при взаємодії з постійним магнітним полем якоря виводить із стану рівноваги коливальну систему вібратора. При зміні напрямку проходження струму в обмотках статора вал рухається в протилежну сторону під дією електромагнітної сили та енергії, накопиченої в пружинах. Обмотки статора лише поповнюють енергію втрат за кожний цикл коливань. З'єднання обмоток може бути послідовним або паралельним. Частота і амплітуда коливань визначається частотою, амплітудою, формою електричних імпульсів, що подаються на обмотки З від джерела живлення, а також полюсним розподілом.

МАТЕМАТИЧНА МОДЕЛЬ РУХУ ВІБРОУДАРНОЇ СИСТЕМИ

В загальному випадку переміщення віброударної системи можна описати системою рівнянь [3]:

$$m\ddot{x}_{1} + c(x_{1} - x_{2}) = F(t);$$

$$M\ddot{x}_{2} + c(x_{2} - x_{1}) = \sum P,$$
(1)

де F(t) – внутрішня періодична сила, яка забезпечує переміщення ударної частини відносно елемента, що занурюється; $\sum P$ – сума зовнішніх сил (сили бокового та лобового тертя тощо) які прикладені до елемента, що занурюється; x_1 , x_2 – переміщення ударної частини і елемента, що занурюється, відповідно; c – приведена жорсткість пружного елемента.

Безпосереднє застосування системи (1) для розрахунку параметрів електродинамічної віброударної системи неможливе, оскільки амплітуда сили F не є фіксованою, а залежить від тягової характеристики вібратора, положення якоря та амплітуди його коливань.

Визначимо, як впливає форма силового імпульсу на амплітуду коливань якоря.

В [4] розглянуто наступні форми імпульсів сил (рис. 2, а): $F_1 - 3$ крутим переднім фронтом наростання і пологим фронтом спаду; $F_2 - 3$ пологим переднім фронтом наростання і крутим фронтом спаду; $F_3 - 3$ крутим фронтом наростання і спаду і постійної протягом дії такту; $F_4 - 3$ крутим фронтом наростання і спаду, постійна і діє не повний такт. При порівнянні сил передбачається, що площі імпульсів сил рівні між собою.

Закон зміни сил F_1 , F_2 , F_3 , F_4 описується наступними рівняннями:

$$F_{1} = F_{\max}\left(1 - \frac{t'}{t}\right);$$

$$F_{2} = F_{\max}\frac{t'}{t};$$

$$F_{3} = F_{\max}/2;$$

$$F_{4} = \begin{cases} F_{\max} & \text{при } 0 \le t' \le t/2, \\ 0 & \text{при } t/2 \le t' \le t, \end{cases}$$
(2)

де t – поточний час такту; t – час всього такту; F_{max} – найбільше значення, яке приймають сили F_1, F_2, F_4 .

На рис. 2, б представлено графік зміни координати *х* ходу якоря для даних сил. Рівняння (2) описують сили, які безпосередньо діють на якір, тобто без урахування інших сил, таких, як, наприклад, сила пружності, що має місце у вібраторах.

Розглянемо випадок, коли якір масою m з'єднується з опорою через лінійну гвинтову пружину K (рис. 3). Якщо вважати, що можливе тільки горизонтальне переміщення якоря, а маса пружини мала у порівнянні з масою якоря, то систему можна розглядати, як систему з одним ступенем свободи.

Якщо знехтувати впливом демпфування, то закон руху якоря в цьому випадку на інтервалі *t* можна представити у наступному вигляді [5]:

$$x = \frac{1}{p} \int_{0}^{t} q \sin p(t - t') dt',$$
 (3)

де $p = \sqrt{k/m}$ - власна частота коливальної системи; k - сумарна жорсткість пружин; m - маса якоря; q = F(t')/m - сила, віднесена до одиниці маси.

Тоді для сили *F*₁ можна записати:

$$q_{1} = \frac{F_{\max}\left(1 - \frac{t'}{t}\right)}{m};$$

$$x_{1} = \frac{F_{\max}}{mp} \int_{0}^{t} \left(1 - \frac{t'}{t}\right) \sin p(t - t') dt';$$

$$x_{1} = \frac{F_{\max}}{mp} \left(\frac{\sin p(t' - t) - p(t' - t) \cos p(t' - t)}{p^{2}t}\right) \Big|_{0}^{t};$$

$$x_{1} = \frac{F_{\max}}{k} \left(\frac{\sin pt}{pt} - \cos pt\right).$$
(4)

Аналогічно, для сил F_2 , F_3 , F_4 , можна записати:

$$q_{2} = \frac{F_{\max}t'}{mt};$$

$$x_{2} = \frac{F_{\max}}{mp} \int_{0}^{t} \frac{t'}{t} \sin p(t-t')dt';$$

$$x_{2} = \frac{F_{\max}}{mp} \left(\frac{pt' \cdot \cos p(t'-t) - \sin p(t'-t)}{p^{2}t} \right) \Big|_{0}^{t};$$

$$x_{2} = \frac{F_{\max}}{k} \left(1 - \frac{\sin pt}{pt} \right).$$

$$q_{3} = \frac{F_{\max}}{2m};$$
(5)

$$x_{3} = \frac{F_{\max}}{2mp} \int_{0}^{t} \sin p(t-t')dt';$$

$$x_{3} = \frac{F_{\max}}{2mp} \left(\frac{\cos p(t'-t)}{p}\right)_{0}^{t};$$

$$x_{3} = \frac{F_{\max}}{2k} (1 - \cos pt).$$
(6)
$$q_{4} = \begin{cases} \frac{F_{\max}}{m} & \text{при } 0 \le t' \le t/2; \\ 0 & \text{при } t/2 \le t' \le t; \end{cases}$$

$$x_{4} = \begin{cases} \frac{F_{\max}}{mp} \int_{0}^{t} \sin p(t-t')dt' & \text{при } 0 \le t' \le t/2; \\ \frac{F_{\max}}{mp} \int_{0}^{t} \sin p(t-t')dt' & \text{при } 0 \le t' \le t/2; \end{cases}$$

$$x_{4} = \begin{cases} \frac{F_{\max}}{mp} \left(\frac{\cos p(t'-t)}{p}\right)_{0}^{t} & \text{при } 0 \le t' \le t/2; \\ \frac{F_{\max}}{mp} \left(\frac{\cos p(t'-t)}{p}\right)_{0}^{t} & \text{при } 0 \le t' \le t/2; \end{cases}$$

$$x_{4} = \begin{cases} \frac{F_{\max}}{mp} \left(\frac{\cos p(t'-t)}{p}\right)_{0}^{t} & \text{при } 0 \le t' \le t/2; \\ \frac{F_{\max}}{mp} \left(\frac{\cos p(t'-t)}{p}\right)_{0}^{t} & \text{при } t/2 \le t' \le t; \end{cases}$$

$$x_{4} = \begin{cases} \frac{F_{\max}}{mp} \left(\frac{\cos p(t'-t)}{p}\right)_{0}^{t} & \text{при } t/2 \le t' \le t; \end{cases}$$

$$x_{4} = \begin{cases} \frac{F_{\max}}{mp} \left(\frac{\cos p(t'-t)}{p}\right)_{0}^{t} & \text{при } t/2 \le t' \le t; \end{cases}$$

$$x_{4} = \begin{cases} \frac{F_{\max}}{mp} \left(\cos p(t-t_{1}) - \cos pt_{1}\right) & \text{при } t/2 \le t' \le t, \end{cases}$$

$$x_{4} = \begin{cases} \frac{F_{\max}}{k} (\cos p(t-t_{1}) - \cos pt_{1}) & \text{при } t/2 \le t' \le t, \end{cases}$$

де $t_1 = t/2$.

 x_4

Переміщення якоря під час дії сил F_1 , F_2 , F_3 , F_4 з урахуванням сумарної жорсткості пружин представлено на рис. 4.

Для того, щоб дослідити вплив форми імпульса періодичної змушуючої сили на хід якоря, представимо дані сили F_1 , F_2 , F_3 , F_4 у вигляді періодичних функцій з періодом $2\pi/\omega$, і розкладемо їх у тригонометричний ряд Фур'є [5] виду:

$$F(t) = a_0 + a_1 \cos \omega t + a_2 \cos 2\omega t + \dots + b_1 \sin \omega t + b_2 \sin 2\omega t + \dots = a_0 + \sum_{i=1}^n (a_i \cos i\omega t + b_i \sin i\omega t),$$
(8)

де
$$a_0 = \frac{1}{T} \int_0^T F(t) dt$$
, (9)

 $T = 2\pi / \omega$ – період змушуючої сили;

$$a_{i} = \frac{2}{T} \int_{0}^{t} F(t) \cos i\omega t \, dt \; ; \tag{10}$$

$$b_i = \frac{2}{T} \int_0^T F(t) \sin i\omega t \, dt \,. \tag{11}$$

Тоді для функції $F_1(t)$ з виразу (9) можна бачити, $2\pi/\omega$

що інтеграл $\int_{0} F_1(t) dt$ представляє собою площу,

обмежену даною функцією і віссю абсцисс на інтервалі від t=0 до $t=2\pi/\omega$ (рис. 5).

Рис. 5

Очевидно, що ця площа дорівнює нулю, тобто можна записати, що $a_0=0$. З виразу (10) отримаємо:

$$\begin{aligned} a_{i} &= \frac{2}{T} \int_{0}^{T} F_{1}(t) \cos i\omega t \, dt = \frac{\omega}{\pi} \int_{0}^{2\pi/\omega} F_{1}(t) \cos i\omega t \, dt ; \\ a_{i} &= \frac{2\omega}{\pi} \int_{0}^{\pi/\omega} F_{1}(t) \cos i\omega t \, dt = \frac{2F_{\max}\omega}{\pi} \times \\ &\times \int_{0}^{\pi/\omega} \left(1 - \frac{t\omega}{\pi}\right) \cos i\omega t \, dt \end{aligned}; \\ a_{i} &= \frac{2F_{\max}\omega}{\pi} \left(\frac{-\cos i\omega t + i(\pi - \omega t)\sin i\omega t}{i^{2}\omega\pi}\right) \Big|_{0}^{\pi/\omega} ; \\ a_{i} &= \frac{2F_{\max}\omega}{\pi} \left(\frac{1 - \cos i\pi}{i^{2}\omega\pi}\right) = \frac{2F_{\max}}{i^{2}\pi^{2}} \left(1 - (-1)^{i}\right). \end{aligned}$$
(12)
3 виразу (11) для функції $F_{1}(t)$ отримаємо:
 $b_{i} &= \frac{2}{T} \int_{0}^{\pi/\omega} F_{1}(t)\sin i\omega t \, dt = \frac{\omega}{\pi} \int_{0}^{2\pi/\omega} F_{1}(t)\sin i\omega t \, dt ; \end{cases}$ $b_{i} &= \frac{2\omega}{\pi} \int_{0}^{\pi/\omega} F_{1}(t)\sin i\omega t \, dt = \frac{2F_{\max}\omega}{\pi} \times \int_{0}^{\pi/\omega} \left(1 - \frac{t\omega}{\pi}\right)\sin i\omega t \, dt \end{aligned}$

$$b_{i} = \frac{2F_{\max}\omega}{\pi} \left(-\left(\frac{i(\pi - t\omega)\cos i\omega t + \sin i\omega t}{i^{2}\omega\pi}\right) \right) \Big|_{0}^{\pi/\omega};$$

$$b_{i} = \frac{2F_{\max}\omega}{\pi} \left(\frac{i\pi - \sin i\pi}{i^{2}\omega\pi}\right) = \frac{2F_{\max}}{i\pi}.$$
 (13)

Підставивши (12) і (13) у вираз для тригонометричного ряду (8), отримаємо:

$$F_{1}(t) = \frac{2F_{\max}}{\pi} \left(\frac{2}{\pi} \cos \omega t + \frac{2}{9\pi} \cos 3\omega t + ... + \sin \omega t + \frac{1}{2} \sin 2\omega t + \frac{1}{3} \sin 3\omega t + ... \right).$$
(14)

Аналогічно, для функції $F_2(t)$ з виразу (9) можна бачити, що інтеграл $\int_{0}^{2\pi/\omega} F_2(t)dt$ представляє собою площу обмежену даною функцією і віссю абсцисс на інтервалі від t=0 до $t=2\pi/\omega$ (рис. 6), і $a_0=0$.

Рис. 6

3 виразу (10) для функції
$$F_2(t)$$
 отримаємо:

$$a_i = \frac{2\omega}{\pi} \int_0^{\pi/\omega} F(t) \cos i\omega t \, dt = \frac{2F_{\max}\omega^2}{\pi^2} \int_0^{\pi/\omega} t \cos i\omega t \, dt ;$$

$$a_i = \frac{2F_{\max}\omega^2}{\pi^2} \left(\frac{\cos i\omega t + i\omega t \sin i\omega t}{i^2\omega^2}\right) \Big|_0^{\pi/\omega} ;$$

$$a_i = \frac{2 \cdot F_{\max} \cdot \omega^2}{\pi^2} \left(\frac{\cos i\pi - 1}{i^2 \cdot \omega^2}\right) = \frac{2 \cdot F_{\max}}{i^2 \cdot \pi^2} \left((-1)^i - 1\right). (15)$$
3 виразу (11) для функції $F_2(t)$ отримаємо:

$$b_i = \frac{2\omega}{\pi} \int_0^{\pi/\omega} F_2(t) \sin i\omega t \, dt = \frac{2F_{\max}\omega^2}{\pi^2} \int_0^{\pi/\omega} t \sin i\omega t \, dt ;$$

$$b_i = \frac{2F_{\max}\omega^2}{\pi^2} \left(\frac{\sin i\omega t - i\omega t \cos i\omega t}{i^2\omega^2}\right) \Big|_0^{\pi/\omega} ;$$

$$b_i = \frac{2F_{\max}\omega^2}{\pi^2} \left(\frac{\sin i\pi - i\pi \cos i\pi}{i^2\omega^2}\right) = \frac{2 \cdot F_{\max}}{i\pi} (-1)^{i+1}. (16)$$

Підставивши (15) і (16) у вираз для тригонометричного ряду (8), отримаємо:

$$F_{2}(t) = \frac{2F_{\max}}{\pi} \left(-\frac{2}{\pi} \cos \omega t - \frac{2}{9 \cdot \pi} \cos \omega t + ... + \sin \omega t - \frac{1}{2} \sin 2\omega t + \frac{1}{3} \sin 3\omega t + ... \right).$$
(17)

Оскільки функція $F_3(t)$ непарна (рис. 7), то у ряді Фур'є для функції $F_3(t)$ будуть відсутні вільний член $a_0=0$ і члени з косинусами.

3 виразу (11) отримаємо:

$$b_{i} = \frac{2\omega}{\pi} \int_{0}^{\pi/\omega} F_{3}(t) \sin i\omega t \, dt = \frac{F_{\max}\omega}{\pi} \int_{0}^{\pi/\omega} \sin i\omega t \, dt ;$$

$$b_{i} = \frac{F_{\max}\omega}{\pi} \left(-\left(\frac{\cos i\omega t}{i\omega}\right) \right) \Big|_{0}^{\pi/\omega} ;$$

$$b_{i} = \frac{F_{\max}\omega}{\pi} \left(\frac{1-\cos i\pi}{i\omega}\right) = \frac{F_{\max}}{i\pi} \left(1-(-1)^{i}\right). \quad (18)$$

Рис. 7

Підставивши (18) у вираз для тригонометричного ряду (8), отримаємо:

$$F_3(t) = \frac{2F_{\max}}{\pi} \left(\sin \omega t + \frac{1}{3} \sin 3\omega t + \frac{1}{5} \sin 5\omega t + \dots \right).$$
(19)

Для функції $F_4(t)$ (рис. 8) можна бачити, що $a_0=0$.

3 виразу (10) отримаємо:

$$a_{i} = \frac{2\omega}{\pi} \int_{0}^{\pi/2\omega} F_{4}(t) \cos i\omega t \, dt = \frac{2F_{\max}\omega}{\pi} \int_{0}^{\pi/2\omega} \cos i\omega t \, dt ;$$

$$a_{i} = \frac{2F_{\max}\omega}{\pi} \left(\frac{\sin i\omega t}{i\omega}\right)\Big|_{0}^{\pi/2\omega};$$

$$a_i = \frac{2F_{\max}\omega}{\pi} \left(\frac{\sin\frac{i\pi}{2}}{i\omega}\right) = \frac{2F_{\max}}{i\pi} (-1)^{(i-1)/2}, \quad (20)$$

де *i*=1,3,5,7,

З виразу (11) для функції $F_4(t)$ отримаємо:

$$b_{i} = \frac{2\omega}{\pi} \int_{0}^{\pi/2\omega} F_{4}(t) \sin i\omega t \, dt = \frac{2F_{\max}\omega}{\pi} \int_{0}^{\pi/2\omega} \sin i\omega t \, dt ;$$

$$b_{i} = \frac{2F_{\max}\omega}{\pi} \left(-\left(\frac{\cos i\omega t}{i\omega}\right) \right) \Big|_{0}^{\pi/2\omega} ;$$

$$b_{i} = \frac{2F_{\max}\omega}{\pi} \left(\frac{1 - \cos\frac{i\pi}{2}}{i\omega} \right) = \frac{2F_{\max}}{i\pi} \left(1 - \cos\frac{i\pi}{2} \right). \quad (21)$$

Підставивши (20) і (21) у вираз для тригонометричного ряду, (8) отримаємо:

$$F_4(t) = \frac{2F_{\max}}{\pi} \left(\cos \omega t - \frac{1}{3} \cos 3\omega t + \dots + \sin \omega t + \sin 2\omega t + \frac{1}{3} \sin 3\omega t + \dots \right).$$
(22)

Тоді, розглядаючи, як і раніше, систему з одним ступенем свободи (рис. 9), можна записати вирази, що описують переміщення (коливання, що встановилися) при прикладенні сил $F_1(t)$, $F_2(t)$, $F_3(t)$, $F_4(t)$. Вони мають вигляд:

$$x_{1} = \frac{2F_{\max}}{\pi k} \left(\beta_{1} \frac{2}{\pi} \cos \omega t + \beta_{3} \frac{2}{9\pi} \cos 3\omega t + ... + \beta_{1} \sin \omega t + \beta_{2} \frac{1}{2} \sin 2\omega t + \beta_{3} \frac{1}{3} \sin 3\omega t + ... \right);$$
(23)

$$x_{2} = \frac{2F_{\max}}{\pi k} \left(-\beta_{1} \frac{2}{\pi} \cos \omega t - \beta_{3} \frac{2}{9 \cdot \pi} \cos 3\omega t + ... + \beta_{1} \sin \omega t - (24) \right)$$

$$-\beta_{2} \frac{1}{2} \sin 2\omega t + \beta_{3} \frac{1}{3} \sin 3\omega t + ... ;$$

$$x_{3} = \frac{2F_{\max}}{\pi k} \left(\beta_{1} \sin \omega t + \beta_{3} \frac{1}{3} \sin 3\omega t + \beta_{5} \frac{1}{5} \sin 5\omega t + ... \right);$$

$$(25)$$

$$x_{4} = \frac{2F_{\max}}{\pi k} \bigg(\beta_{1} \cos \omega t - \beta_{3} \frac{1}{3} \cos 3\omega t + \dots + \beta_{1} \sin \omega t + \beta_{2} \sin 2\omega t + \beta_{3} \frac{1}{3} \sin 3\omega t + \dots \bigg),$$

$$(26)$$

де
$$\beta = \frac{1}{1 - \omega^2 / p^2}$$
 коефіцієнт підсилення.
При $\omega/p = 0.9$ коефіцієнти підсилення:

$$\beta_1 = \frac{1}{1 - \omega^2 / p^2} = 5,26; \quad \beta_2 = \frac{1}{(1 - 2\omega / p)^2} = -0,45;$$
$$\beta_3 = \frac{1}{(1 - 3\omega / p)^2} = -0,16.$$

На рис. 10 представлено переміщення x_1 , x_2 , x_3 , x_4 , x_5 якоря при прикладенні сил $F_1(t)$, $F_2(t)$, $F_3(t)$, $F_4(t)$, $F_5(t)$ відповідно. Сила $F_5(t) = \frac{F_{\max}\pi}{4} \sin \omega t$ представляє собою синусоїду, амплітуда якої $A = \frac{F_{\max}\pi}{4}$ визначається з умови рівності площ імпульсів сил між собою. Оскільки середне значення синусоїдальної сили дорівнює $F_{\text{сер.}} = \frac{2}{T} \int_{0}^{T/2} A \sin \omega t \, dt = \frac{2A}{\pi} = \frac{F_{\max}\pi}{2}$ (див. рис. 2, а), то $A = \frac{F_{\max}\pi}{4}$.

Рис. 10

З рис. 10 видно, що максимальне значення амплітуди переміщення якоря має силова функція $F_4(t)$. Для того, щоб забезпечити необхідний закон руху, необхідно формувати такий імпульс струму і шпаруватість, які б забезпечували заданий закон зміни механічної характеристики.

Статична тягова характеристика коаксіальнолінійного синхронного вібратора (паралельне з'єднання обмоток статора), яка представляє собою залежність електромагнітної сили F_{en} від положення якоря $F_{en}=f(x)$ при I=const, має вигляд, представлений на рис. 11.

Попередні випробування показали, що амплітуда A_1 коливання якоря у резонансному режимі досягає 15 мм. Максимальне значення F_{en} має місце на ділянці (- x_1 ; x_1). Очевидно, що і ККД перетворення електричної енергії у механічну матиме максимальне значення на цьому проміжку. Тому для даного типу машин можна підвищити ККД шляхом подачі імпульсів струму під час проходження якорем ділянки (- x_1 ; x_1), і обмежити подачу струму у крайніх положеннях. Тягова характеристика на білярезонансних частотах на проміжку (- x_1 ; x_1), зміщується вниз і стає майже лінійною, тобто на цьому поміжку $F_{en} \approx const$.

ВИСНОВКИ

Ефективність застосування коаксіальнолінійного синхронного вібратора для проходки горизонтальних свердловин можна підвищити шляхом подачі живлення на статор при проходженні якорем ділянки тягової характеристики з найбільш ефективним енергоперетворенням. Розрахунок параметрів проходки можна вести з використанням системи рівнянь 1, розклавши імпульс сили у ряд Фур'є. Питання впливу форми та шпаруватості імпульсів живлення потребує подальших практичних досліджень.

ЛІТЕРАТУРА

- Марківський В.І., Тугай А.М., Гарник В.К. Новітні безтраншейні технології будівництва, ремонту та відновлення інженерних мереж // Будівництво України. 2002.– №2, – С. 30–33.
- [2] Пат. 72162 А Україна. МКИ Е02D7/20 Віброзанурювач / М.В. Богаєнко, Г.М. Голенков, В.П. Голуб та ін.; Заявлено 31.12..2003; Опубл. 17.01.2005. Бюл. №1. – 4 с.
- [3] Кершенбаум Н.Я., Минаев В.И. Проходка горизонтальных и вертикальных скважин ударным способом. – М.: Недра, 1984. –245 с.
- [4] Ряшенцев Н.П., Ряшенцев В.Н. Электромагнитный привод линейных машин. – Новосибирск: Наука. СО, 1985. –152 с.
- [5] Тимошенко С.П., Янг Д.Х., Уивер У. Колебания в инженерном деле. – М.:, 1984. – 475 с.
- [6] Вибрации в технике / Азбель Г.Г., Блехман И.И., Быховский И.И. и др. / Ред. сов: Челомей (пред.). Справочник. В 6 т. – М.: Машиностроение, 1981. – Т. 4: Вибрационные процессы и машины / Под ред. Левендела Э.Э. – 509 с.

Надійшла 10.05.2006