УДК 539.3

Сало В.А.

РАСЧЕТ УПРУГИХ ПЛАСТИН И ОБОЛОЧЕК НА ОСНОВЕ RVR-МЕТОДА

Методам расчета на прочность и жесткость пластинчатых и оболочечных элементов машиностроительных конструкций посвящена обширная научная литература, однако проблема создания в рамках пространственной постановки надежных, достаточно универсальных и алгоритмически простых для численной реализации методов расчета упругих пластин и оболочек произвольной толщины до сих пор сохраняет свою актуальность и значимость. В монографии [1] даны классификация и обстоятельный анализ известных в научной литературе теорий оболочек (в частности, пластин), многообразие которых создает определенные затруднения в выборе и практическом применении конкретной модели оболочки.

Автором работы [1] разработан новый численно-аналитический RVR-метод решения краевых задач статически нагруженных анизотропных оболочек произвольной гауссовой кривизны. Метод основан на замене решения трехмерной задачи теории упругости регулярной последовательностью решений двумерных задач прикладных теорий оболочек и использует смешанный вариационный принцип Рейсснера, общие уравнения математической теории упругости, метод И.Н. Векуа, алгоритм автоматического уточнения сдвиговой модели оболочки, апостериорную двустороннюю оценку точности получаемых приближенных решений и теорию R-функций, с помощью которых на аналитическом уровне учитывается геометрическая информация краевых задач и строятся структуры решений, точно удовлетворяющие всем граничным условиям.

В настоящей работе предлагается использование RVR-метода в задаче расчета нагруженной локальным внутренним давлением $t_3^- = -q_0 \sin^5 \left[\pi \left(\vartheta + 1 \right) / 2 \right]$ ортотропной сферической оболочки с двумя полюсными круговыми радиуса r_0 отверстиями с боковыми поверхностями Γ_s ($\theta = \theta_s$, s = 1, 2). Введем в срединной поверхности Ω_s радиуса R оболочки криволинейные координаты θ, φ и z, где z – расстояние вдоль нормали к Ω_s ($|z| \le h/2$). Обозначим $\vartheta = (2\theta - \pi) / (\pi - 2\theta_1)$ при $|\vartheta| \le 1$.

Для исследуемой симметричной ($u_2 = 0$, $\sigma_{12} = 0$ и $\sigma_{23} = 0$) краевой задачи граничные условия на лицевых поверхностях Γ^{\pm} оболочки определяются видом:

$$\Gamma^{+}: \ \sigma_{13} = 0; \ \sigma_{33} = 0, \quad \Gamma^{-}: \ \sigma_{13} = 0; \ \sigma_{33} = t_{3}^{-}, \tag{1}$$

а на поверхностях Γ_s отверстий рассмотрим следующие случаи граничных условий:

a)
$$\sigma_{11} = 0; \ \sigma_{13} = 0,$$
 b) $\sigma_{11} = 0; \ u_3 = 0,$
c) $u_1 = 0; \ \sigma_{13} = 0,$ d) $u_1 = 0; \ u_3 = 0.$ (2)

Условия (2a) соответствуют свободному краю, (2b) – краю с абсолютно жесткой в своей поверхности диафрагмой, (2c) – скользящей заделке края, (2d) – абсолютно заделанному краю (жесткому закреплению или защемлению). Введем приведенные перемещения \tilde{u}_i и напряжения $\tilde{\sigma}_{ii}$:

$$\tilde{u}_{i}^{\pm} = u_{i}^{\pm} E/q_{0} R; \quad \tilde{\sigma}_{ii}^{\pm} = \sigma_{ii}^{\pm}/q_{0}, \qquad (3)$$

где плюс (минус) соответствует значению искомой величины при $\zeta = \pm 1$ ($\zeta = 2z / h$).

Воспользуемся вариационным уравнением Рейсснера и структурами решений [1] для решения сформулированной задачи при R = 0.6 M; $\theta_1 = \pi/4$; $q_0 = 1 \text{ МПа}$; $E_0 = 1 \text{ ГПа}$; $v_{ij} = 0.3$, $E_1^0 = E_3^0 = 20E_0$; $G_{13}^0 = E_0$. В табл. 1 при различных граничных условиях на боковых поверхностях Γ_s представлены в сечении $\vartheta = 0$ значения перемещений и напряжений (3) для трансверсально-изотропного ($E_2 = E_1$) сферического пояса средней толщины (h/R = 0.2). В первой \div пятой строчках табл. 1 – соответственно результаты, полученные на основе применения моделей (2,1,2,1,0), (2,2,2,2,1), (4,2,4,2,1), (4,3,4,3,2) и (5,5,5,5,5) уточненных теорий оболочек. На рис. 1 и 2 показаны графики распределения приведенных перемещений и напряжений (3) в случае использования сдвиговой модели (5,5,5,5,5) теории оболочек пятого приближения.

Краевые	Приведенные перемещения и напряжения					
условия	\tilde{u}_3^-	\tilde{u}_3^+	$ ilde{\mathbf{\sigma}}_{11}^-$	$ ilde{\sigma}_{11}^{\scriptscriptstyle +}$	$ ilde{\mathbf{\sigma}}_{22}^-$	$\tilde{\sigma}_{22}^{\scriptscriptstyle +}$
(2a)	14.67	14.67	-1.569	1.591	2.500	3.152
	15.55	14.15	-1.565	1.605	2.605	3.046
	15.55	14.15	-1.628	1.602	2.627	3.053
	15.52	14.12	-1.814	1.803	2.603	3.107
	15.50	14.10	-1.878	1.792	2.574	3.098
(2b)	13.74	13.74	-1.159	1.424	2.416	2.933
	14.53	13.16	-1.235	1.531	2.512	2.887
	14.53	13.16	-1.204	1.531	2.508	2.823
	14.50	13.13	-1.404	1.655	2.500	2.884
	14.28	13.11	-1.473	1.642	2.469	2.873
(2c)	11.39	11.39	-0.859	1.814	1.985	2.623
	12.21	11.34	-0.945	1.821	2.082	2.522
	12.21	11.34	-0.989	1.823	2.100	2.528
	12.18	10.82	-1.130	2.057	2.068	2.584
	12.17	10.81	-1.200	2.042	2.037	2.573
(2d)	10.52	10.52	-0.554	1.802	1.782	2.461
	11.29	9.934	-0.626	1.903	2.076	2.413
	11.29	9.935	-0.695	1.905	2.091	2.418
	11.24	9.887	-0.795	2.036	1.959	2.408
	11.22	9.862	-0.861	2.024	1.928	2.397

Рисунок 1 – Распределение перемещений и напряжений вдоль меридиана оболочки в зависимости от способа закрепления отверстий (2)

Согласно работе [1] числа l_i , l_{ij} ($i, j = \overline{1,3}$) аппроксимаций u_i и σ_{ij} по толщине оболочки определяют ее модель, выбор которой соответствует (при i, j = 1, 2) заданию величин (l_i , l_3 , l_{ij} , l_{i3} , l_{33}), где l_i – число удерживаемых членов в разложении по координате ζ касательных перемещений u_i ; l_3 – нормального перемещения u_3 ; l_{ij} – тангенциальных напряжений σ_{ij} ; l_{i3} – поперечных касательных напряжений σ_{i3} и l_{33} –

нормального напряжения σ_{33} . Задание в программе параметров $(l_i, l_3, l_{ij}, l_{i3}, l_{33})$ позволяет автоматически переходить к разным двумерным теориям оболочек. Например, вариант (2,1,2,1,0) соответствует теории оболочек типа Тимошенко; (2,2,2,2,1), (4,2,4,2,1) и (4,3,4,3,2) – прикладным теориям оболочек [2], [3] и [4].

Рисунок 2 – Распределение перемещений и напряжений вдоль меридиана оболочки в зависимости от величины модуля сдвига G₁₃ при условиях (2d)

Графики на рис. 1 и 2 построены вдоль безразмерной координаты 9 меридиана срединной (при $\zeta = 0$) поверхности нетонкой (h / R = 0.2) ортотропной оболочки. Цифрами 1, 2, 3 и 4 на рис. 1 обозначены графики для различных вариантов граничных условий на боковых поверхностях отверстий: соответственно для (2a), (2b), (2c) и (2d). Числа при графиках на рис. 2 соответствуют значениям соотношения G_{13}/E_1 , характеризующего сдвиговую жесткость трансверсально-изотропного ($E_2 = E_1$) материала сферической оболочки. Представленные таблица и рисунки дают достаточно полное представление о зависимости значений искомых характеристик напряженно-деформированного состояния исследуемой оболочки от степени сходимости численных решений в зависимости от использования более точной сдвиговой модели оболочки, от способа закрепления отверстий, а также от степени анизотропии материала оболочки.

Результаты вычислений искомых величин существенно зависят от выбранной сдвиговой модели $(l_i, l_3, l_{ij}, l_{i3}, l_{33})$ оболочки. Из представленных результатов следует, что из уточненных теорий второго приближения модель анизотропных оболочек Я.М. Григоренко [2] дает лучшие результаты, чем теория Тимошенко, и практически совпадающие с результатами менее последовательной с точки зрения математической корректности прикладной теории четвертого приближения В.В. Пикуля [3]. Как и ожидалось, наиболее точные результаты можно получить в случае применения более сложной сдвиговой модели (4,3,4,3,2) прикладной теории оболочек четвертого приближения В.А. Родионовой, Титаева Б.Ф. и К.Ф. Черных [4].

Выполненное численное исследование подтверждает возможность эффективного использования предложенного автором научно обоснованного численноаналитического RVR-метода [1] при расчете нетонких анизотропных оболочек.

Литература

1. Сало В.А. Краевые задачи статики оболочек с отверстиями. – Харьков: НТУ «ХПИ», 2003. – 216 с.

2. Григоренко Я.М., Василенко А.Т., Голуб Г.П. Статика анизотропных оболочек с конечной сдвиговой жесткостью. – К.: Наукова думка, 1987. – 216 с.

3. Пикуль В.В. Прикладная механика деформируемого твердого тела. – М.: Наука, 1989. – 221 с.

4. Родионова В.А., Титаев Б.Ф., Черных К.Ф. Прикладная теория анизотропных пластин и оболочек. – СПб.: Изд-во С.–Петербург. ун-т, 1996. – 278 с.

УДК 539.3

Сало В.А.

РОЗРАХУНОК ПРУЖНИХ ПЛАСТИН І ОБОЛОНОК НА ОСНОВІ RVR-МЕТОДУ

Запропоновано підхід до визначення напружено-деформованого стану пружних пластин і оболонок довільної товщини. Використовуваний RVR-метод заснований на варіаційному принципі Рейсснера, теорії R-функцій, загальних рівнянь тривимірної теорії пружності, методу И.Н. Векуа й алгоритму двосторонньої оцінки точності рішень змішаних варіаційних задач. Ефективність методу показана на прикладах.