УДК 621.314

Грек А.С., Усенко А.Ю., Губинский М.В., Шишко Ю.В.

ИССЛЕДОВАНИЕ ТЕРМИЧЕСКОГО РАЗЛОЖЕНИЯ БИОМАССЫ В ОКИСЛИТЕЛЬНОЙ СРЕДЕ

введение

Рост интереса к утилизации отходов биомассы с целью производства энергии в настоящее время усиливается еще и тем, что начинают вступать в силу международные договоренности в сфере снижения выбросов парниковых газов в атмосферу. В ближайшее время начнут действовать финансовые механизмы, заложенные в Киотском протоколе, направленные на внедрение проектов по снижению выбросов парниковых газов в атмосферу. Одним из главных направлений является замена ископаемых видов топлива на возобновляемые источники энергии, такие как биомасса.

Одним из перспективных направлений утилизации биомассы является технология окислительного пиролиза (ТОП) [1]. Особенностью такой технологии является то, что процесс пиролиза не требует дополнительных затрат на создание инертной атмосферы в реакционной зоне, а получаемый газ может без очистки поступать на горение в энергетический агрегат для частичной или полной замены природного газа. Технология направлена на переработку твердых мелкодисперсных отходов биомассы. Результатом переработки также является коксовый остаток, который можно газифицировать, сжигать, или активировать.

МЕТОДИКА ИССЛЕДОВАНИЙ

Реализация ТОП напрямую зависит от возможности избежать воспламенения биомассы в реакционной зоне. С целью определить граничные значения температуры, при которой возможно проведение термической переработки отходов биомассы в атмосфере окислителя, был проведен ряд экспериментов. Эксперименты проводились для лузги подсолнечника. Лузга помещалась в цилиндрическую камеру пиролиза и продувалась потоком подогретого воздуха (200-300 °C). Скорость воздушного потока выбиралась из условия существования устойчивого кипящего слоя (2,8-4,9 м/с).

Результаты экспериментальных исследований были обобщены и представлены в виде регрессионной зависимости продолжительности пребывания биомассы в кипящем слое до воспламенения от температуры воздуха $\tau = f(t)$ (рис. 1).

Для анализа экспериментальных данных: определения условий воспламенения, степени разложения биомассы до начала горения, а также возможности прогнозирования и выбора технологических режимов окислительного пиролиза была создана математическая модель термического разложения биомассы. Модель позволяет определить степень разложения биомассы за время пребывания в реакционной зоне в зависимости от температуры воздушного потока, а также определить динамику выхода

летучих продуктов и тепловой эффект реакций пиролиза. Модель основана на подходе, предложенном Миллером и Биланом [2]. Термическое разложение биомассы рассматривается, как сумма процессов разложения основных компонентов биомассы: целлюлозы, гемицеллюлоз и лигнина.

Рисунок 1 – Зависимость времени пребывания биомассы в реакционной зоне от температуры воздуха

Для всех компонентов биомассы используется общая макрокинетическая схема пиролиза (табл. 1), однако расчет ведется раздельно на основании констант определенных для каждого компонента. Справедливость и универсальность такого подхода обоснована исследованиями [3,4].

Реакционная схема базируется на учете наблюдаемых (кажущихся) макрокинетических параметров, которые характеризуют скорость образования газообразных веществ, смол и коксового остатка.

Таблица 1 – Реакционная схема термического разложения основных компонентов биомассы

целлюлоза V (тв) $\xrightarrow{K_1}$ активная целлюлоза A (тв)	(1)
активная целлюлоза A (тв) $\xrightarrow{K_2}$ смола T (газообр) - q ₁	(2)
активная целлюлоза A (тв) $\xrightarrow{K_3}$ X кокс C(тв) + (1-X)газ G2(газообр) +q ₂	(3)
смола T (газообр) — $K_4 \rightarrow$ газ G1 (газообр) + q ₃	(4)

К_і – константа скорости реакции

q_i – тепловой эффект реакции

Х – массовый коэфициент

Преимуществом такой схемы является возможность учесть влияние времени пребывания летучих продуктов в реакционной зоне. Такой подход, также, позволяет моделировать пиролиз различных видов биомассы исходя из начального содержания основных компонентов.

Все реакции моделируются в соответствии с кинетическим уравнением Аррениуса первого порядка. Макрокинетические константы определяются экспериментально и поэтому имеют достаточно узкий диапазон применимости. Наиболее универсальными являются данные, обобщенные Миллером [2, 4]. Массовый коэффициент образования кокса (X), был также определен экспериментально.

Для расчета образования продуктов реакций, модель содержит систему балансовых уравнений, позволяющих определить массу реагирующих веществ. Расчет ведется

последовательно с шагом по времени. В качестве исходных параметров для каждого шага задается количество вещества и температура. В зависимости от массы образовавшихся продуктов пиролиза рассчитывается тепловой эффект реакции.

Вещества, которые участвуют в реакциях, были объединены в четыре основные группы: исходное вещество (индекс V), активированное вещество (индекс A), смолы (индекс T), коксовый остаток (индекс C), газы (индекс G).

 $\begin{cases} m_V^{"} = m_V^{'} - dm_V; \\ m_A^{"} = m_A^{'} + dm_V - dm_T - dm_{(G2+C)}; \\ m_T^{"} = m_T^{'} + dm_T - dm_{G1}; \\ m_{(G2+C)}^{"} = m_{(G2+C)}^{'} + dm_{(G2+C)}; \\ m_{G2}^{"} = m_{G2}^{'} + (1 - X) \cdot m_{(G2+C)}^{"}; \\ m_{C}^{"} = m_C^{'} + X \cdot m_{(G2+C)}^{"}; \\ m_{G1}^{"} = m_{G1}^{'} + dm_{G1} + m_{G2}^{"}. \end{cases}$ (1)

В начальный момент времени масса всех веществ кроме (m'_V) принимается равной нулю $(m'_i = 0)$.

Масса реагентов в каждый момент времени определялась исходя из зависимости:

$$\frac{\mathrm{d}\,m}{\mathrm{d}\,\tau} = -mA\,\exp\!\left(-\frac{E}{RT}\right),\tag{2}$$

где *т* – масса реагента, кг

АДАПТАЦИЯ МАТЕМАТИЧЕСКОЙ МОДЕЛИ

Адаптация математической модели проводилась путем сравнения результатов моделирования с результатами экспериментальных исследований [5]. Эксперименты проводились термогравиметрическим методом на оборудовании Setaram Company Labsys TM. Объектом исследования была сосновая древесина, высушенная и измельченная до фракций 0,5-1,5 мм. Навеска в 20 г. помещалась в открытом тигле на прецизионные весы и нагревалась в квази-изотермических условиях в атмосфере гелия. Изменение массы навески представлено в виде TG кривых (рис. 2).

Расхождение между результатами экспериментальных и числовых исследований находится в пределах 1,5-3,1 %.

Величина и динамика изменения теплового эффекта пиролиза рассчитанные с помощью математической модели, также соответствуют экспериментальным данным [6]. Но для сравнения использовались данные о нагреве биомассы со скоростью 10 К/мин.

Результаты адоптации позволяют сделать вывод о том, что модель адекватно описывает тепловой эффект реакции и кинетику термического разложения микрочастицы биомассы. Модель может быть использована для анализа экспериментальных исследований процесса пиролиза биомассы.

Рисунок 2 – Динамика изменения массы твердых продуктов пиролиза при различной температуре (t, °C)

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Время пребывания частиц биомассы в реакционной зоне ограничивается температурой воздушного потока, исходя из возможности воспламенения биомассы, (рис.1). В условиях эксперимента биомасса в кипящем слое нагревалась от 40 °C до 300 °C. Скорость нагрева биомассы составляла 80-100К/с. С помощью математической модели была рассчитана кинетика термического разложения при экспериментальных условиях (рис. 3).

Рисунок 3 – Кинетика образования продуктов пиролиза и тепловой эффект 1 – масса твердого вещества, 2 – смолы, 3 – газ, 4 – тепловой эффект

Как видно из (рис. 3) для полного разложения биомассы в условиях эксперимента потребуется 6000 с. Но на практике, при температуре воздуха 300 °С, воспламенение биомассы происходит, примерно через 50 с. Одним из способов избежать воспламенения, является разделение процесса на две стадии [7]. На первой стадии происходит скоростной нагрев биомассы в потоке воздуха. На второй стадии биомасса формирует плотный слой, и дальнейшее разложение происходит в атмосфере летучих продуктов пиролиза. При таком подходе температура биомассы на второй стадии может достигать 330-400 °C, и разложение при такой температуре проходит за 50-100 с.

выводы

Дa

1. Проведены экспериментальные исследования термического разложения биомассы в потоке подогретого воздуха. Установлены временные границы воспламенения в зависимости от температуры воздушного потока.

2. Создана и адоптирована математическая модель термического разложения микрочастицы биомассы. Погрешность моделирования находится в пределах 1,0-3,5 %, что позволяет использовать модель для обработки результатов экспериментальных исследований, и прогнозирования технологических параметров процесса термического разложения.

3. Проведен анализ зависимости времени разложения биомассы от температуры воздушного потока. Обоснован вывод о необходимости разделения процесса окислительного пиролиза на две стадии.

Литература

1. Спосіб переробки відходів біомаси: рішення про видачу деклараційного патенту на винахід № 2001096201 від 10.09.2001; МПК 7 F23G7/00/ М.В. Губинський //Український інститут промислової власності; 02.04.2002; вих. № 23534.

2. Miller, R. S. and Bellan, J., 1997. A generalized biomass pyrolysis model based on superimposed cellulose, hemicellulose and lignin kinetics. Combust. Sci. and Tech. 126, 97-137.

3. Кинетика горения древесных гранул в кипящем слое / А.В. Бородуля, В.И. Дикаленко, Г.И. Пальченок и др. // Весці НАН Беларусі. Сер. фіз.-тэхн. навук. 1999. – № 2. – С. 115-123.

4. Koufopanos C. A., Papayannakos N., 1991. Modeling of the pyrolysis of biomass particles. Studies on kinetics, thermal and heat transfer effects. Can. J. Chem. Eng. 69, 907-915

5. Zakrzewski R. Pyrolysis kinetics of wood comparison of iso- and poly-thermal thermo gravimetric methods.

6. Rath J. Wolfinger M.G. Steiner G., 2002. Heat of wood pyrolysis. Published first on the web via Fuelfirst.com—http://www.fuelfirst.com

7. Губинский М.В., Усенко А.Ю., Грек А.С. 2004. Процесс получения топливного газа путем пиролиза биомассы в потоке горячего воздуха. Труды 2-й Международной конференции «Энергия из биомассы».

УДК 621.314

Грек О.С., Усенко А.Ю., Губинський М.В., Шишко Ю.В.

ДОСЛІДЖЕННЯ ТЕРМІЧНОГО РОЗКЛАДАННЯ БІОМАСИ В ОКИСЛЮВАЛЬНОМУ СЕРЕДОВИЩІ

У статті розглянуто результати експериментальних досліджень термічного розкладення біомаси у потоці гарячого повітря. Наведено опис математичної моделі пролізу мікрочастки біомаси та результати її адоптації. Зроблено висновки про адекватність моделі та необхідність проведення процесу у дві стадії.