УДК 621.926.5

Иванов А.Н.

О СКОЛЬЖЕНИИ ЗАГРУЗКИ В ТРУБНЫХ МЕЛЬНИЦАХ

Харьковский государственный технический университет строительства и архитектуры

В инженерных расчетах для определения угла отрыва шаров от футеровки используется формула Дэвиса, в которой, как и в последующих теориях Фишера и Штейгера [1], не учитываются влияние коэффициента трения на подъем мелющих тел, скольжение их по футеровке, а также степень заполнения ими корпуса мельницы. Фактически из-за скольжения загрузки отрыв её происходит раньше: мелющие тела поднимаются на меньшую высоту и сила удара их по частицам измельчаемого материала уменьшается. Кроме того, если не брать в расчет силу трения, то вообще нельзя объяснить сам факт подъема загрузки в барабане мельницы. Для проектирования оптимальных режимов работы мелющих тел очень важно знать величину скольжения их по футеровке. Поэтому целый ряд авторов (Р. Гийо, Д.К. Крюков, А.В. Рыжов и др.) использовали коэффициент трения при составлении условий предупреждения скольжения загрузки и определении граничного коэффициента трения, который для различных профилей футеровки (кроме гладкой цилиндрической) заменялся коэффициентом сцепления. Однако, непосредственные зависимости для определения угла скольжения и других параметров скольжения загрузки по футеровке были впервые предложены А.В. Сланевским и И.Б. Подьячевой [1,2]. Ограниченность их применения заключается в том, что они выведены только для гладкой цилиндрической футеровки, которая применяется обычно в периодических мельницах мокрого помола. В подавляющем большинстве барабан шаровых и трубных мельниц футеруется плитами различного профиля, имеющих различные коэффициенты сцепления для обеспечения оптимальных режимов работы мелющих тел вдоль барабана мельницы.

С целью ликвидации этого недостатка автором предложены зависимости для определения скольжения загрузки по футеровкам различного профиля. В результате исследований износа футеровочных плит Крюковым Д.К. было показано, что ступенчатые бронеплиты любого угла наклона ступени в конечном итоге приобретают профиль логарифмической спирали с углом наклона 17^{0} [3]. Так как в последнее время в первых камерах, в основном, устанавливают волнистые литые бронеплиты и футеровку из прокатных элементов, которые с учётом наличия измельчаемого материала в итоге имитируют ступенчатую футеровку с разными углами наклона ступени, то целесообразно рассмотреть скольжение загрузки именно по ступенчатой футеровке.

Ранее автором были разработаны зависимости для определения скольжения единичного шара по ступенчатой футеровке [4]. Затем с целью учета степени заполнения барабана мельницы мелющими телами автор использовал несколько вариантов: 1) замена всей мелющей загрузки на центр тяжести с соответствующей ее заменой радиуса и частоты вращения барабана; 2) замена всей мелющей загрузки на фиктивный «редуцированный» слой со своим радиусом при различный частотах вращения с учетом поправочных коэффициентов, полученных опытным путем [5].

Полученные на ЭВМ результаты расчетов показали хорошую точность определения величины нормальных нагрузок загрузки на футеровку. С целью повышения

точности определения остальных параметров скольжения с учетом влияния степени заполнения загрузки автор использовал поправочные коэффициенты, полученные А.В. Сланевским и И.Б. Подъячевой [1,2] опытным путём для гладкой футеровки. Обоснованность такого решения заключается в том, что при одной и той же степени заполнения её влияние будет одинаковым для футеровки любого профиля, так как конструктивные особенности профиля отражаются в описывающих его зависимостях.

Введем следующие обозначения:

R – расчетный радиус барабана мельницы;

т – масса мелющего тела;

ω – угловая скорость вращения барабана мельницы;

I_Ц – центробежная сила инерции;

I_К – сила инерции Кориолиса;

I_Д – добавочная сила инерции, учитывающая степень заполнения загрузки;

N – нормальная сила реакции футеровки;

F_{TP} – сила трения при скольжении мелющего тела;

ОХУ – неподвижная система координат;

OX'Y' – подвижная система координат, связанная с барабаном;

δ – угол между неподвижной и подвижной системами координат;

 θ – угол между ОУ[/] и вектор-радиусом точки, где находится мелющее тело в рассматриваемый момент его скольжения по футеровке, т.е. угол, характеризующий скольжение мелющего тела;

f – коэффициент трения скольжения мелющего тела по футеровке;

φ_м – естественный угол трения измельчаемого материала;

ф – степень заполнения корпуса мельницы мелющими телами;

А – коэффициент, определяемый экспериментально и равный 19;

х – коэффициент, определяемый экспериментально и равный 2,64.

Схема скольжения шара по ступенчатой футеровке дана на рис. 1.

Рисунок 1 – Движение мелющего тела и загрузки по ступенчатой футеровке

Определим скольжение загрузки по ступенчатой футеровке с углом наклона ступени β (рис. 1), заменив постоянный для гладкой цилиндрической футеровки радиус R на переменный радиус ρ для ступени. Для учёта влияния степени заполнения загрузки введём добавочную центробежную силу $I_{\rm d} = m\omega^2 \rho \ A \ \phi^x$, где значения A и x берём из [1,2].

Если смещающая сила F больше силы трения F_{TP} , то мелющее тело начнёт скользить вниз по барабану (точка A). В случае наличия ступени центробежная сила будет давать касательную составляющую, препятствующую скольжению загрузки, поэтому

$$F = mgsin(\alpha - \beta) - m\omega^2 \rho \sin\beta - m\omega^2 \rho \sin\beta A \phi^x = mgsin(\alpha - \beta) - m\omega^2 \rho \sin\beta (1 + A \phi^x).$$
(1)

Сила трения определится как

$$F_{TP} = fN = f\left[m\omega^{2}\rho\cos\beta + m\omega^{2}\rho\cos\beta \cdot A\phi^{x} + mg\cos(\alpha - \beta)\right] = f\left[m\omega^{2}\rho\cos\beta(1 + A\phi^{x}) + mg\cos(\alpha - \beta)\right].$$
(2)

Определим угол начала скольжения α_c из условия равенства этих сил

$$mg\sin(\alpha-\beta) - m\omega^{2}\rho\sin\beta \cdot (1+A\phi^{X}) = fm\omega^{2}\rho\cos\beta \cdot (1+A\phi^{X}) + fmg\cos(\alpha-\beta).$$
(3)

Учитывая, что $f=tg\phi_{\scriptscriptstyle M}$ после преобразований получаем

$$\sin(\alpha - \beta) - tg\phi_{M}\cos(\alpha - \beta) = \frac{\omega^{2}\rho}{g}(\sin\beta + tg\phi_{M}\cos\beta)(1 + A\phi^{X})$$
(4)

ИЛИ

$$\sin\left(\alpha - \beta - \varphi_{\rm M}\right) = \frac{\omega^2 \rho}{g} (1 + A \varphi^{\rm X}) + \sin\left(\varphi_{\rm M} + \beta\right),\tag{5}$$

откуда

$$\alpha_{\rm C} = \varphi_{\rm M} + \beta + \arcsin\left[\frac{\omega^2 \rho}{g} (1 + A \phi^{\rm X}) \sin(\varphi_{\rm M} + \beta)\right].$$
(6)

Как видим, при $\beta = 0$ получаем α_c для гладкой футеровки. Так как $\gamma = \delta + \theta$ и $\delta = \pi - \alpha_c - \omega t$, то подставляя α_c из (6)

$$\gamma = \pi - \left\{ \phi_{\rm M} + \beta + \arcsin\left[\frac{\omega^2 \rho}{g} (1 + A \phi^{\rm X}) \sin\left(\phi_{\rm M} + \beta\right)\right] + \omega t - \theta \right\}.$$
(7)

Определение угла отрыва и величины скольжения загрузки (θ – скорости скольжения и θ – угла скольжения) по ступенчатой футеровке ведем с учетом конструктивных особенностей ступени.

Определим угол отрыва γ_0 мелющего тела от футеровки. Отрыв мелющего тела произойдет при условии N = 0 (точка В). Для определения угла отрыва введем полярные координаты (R, θ). Известно, что в полярных координатах движение мелющего тела, представляющего собой материальную точку, описывается системой дифференциальных уравнений:

$$\begin{cases} m \cdot \begin{pmatrix} \mathbb{I} & \mathbb{I} \\ R - R & \theta^2 \end{pmatrix} = F_R; \\ \frac{m}{R} \cdot \frac{d \begin{pmatrix} R^2 & \theta \\ dt \end{pmatrix}}{dt} = F_\tau, \end{cases}$$
(8)

где F_R – сумма проекций сил на вектор-радиус в рассматриваемый момент времени; F_{τ} – сумма проекций сил на направление, перпендикулярное вектор-радиусу.

Следует отметить, что при определении F_R необходимо учитывать силу инерции Кориолиса (I_K), которая начинает действовать на мелющее тело в момент начала скольжения его по футеровке, так как переносная скорость барабана, относительно которой скользит мелющее тело, является угловой скоростью вращения барабана вокруг своей оси. Сила Кориолиса $I_K = 2m\omega R \theta$, где $R \theta$ – линейная скорость скольжения мелющего тела по футеровке. Для нахождения сил F_R и F_τ схему сил надо рассматривать для 2-го квадранта, в котором в основном и происходит скольжение шара (рис. 1).

Определение угла отрыва и величины скольжения загрузки (θ – скорости скольжения и θ – угла скольжения) по ступенчатой футеровке ведем с учетом конструктивных особенностей ступени.

Для ступени связь $R=\mbox{const}$ нарушается и принимает такой вид кривой логарифмической спирали

$$\rho = \operatorname{Re}^{-\theta \cdot \operatorname{tg}\beta},\tag{9}$$

тогда

$$\gamma = \pi - \left\{ \phi_{\rm M} + \beta + \arcsin\left[\frac{\omega^2 \operatorname{Re}^{-\theta \operatorname{tg}\beta}}{g} (1 + A\phi^{\rm X}) \sin(\phi_{\rm M} + \beta)\right] + \omega 1 - \theta \right\}.$$
(10)

Соответственно имеем первую и вторую производные по времени dt

$${}^{\Box}_{\rho} = \frac{d\rho}{dt} = \frac{d\rho}{d\theta} \cdot \frac{d\theta}{dt} = -Rtg\beta e^{-\theta \cdot tg\beta} \cdot \frac{d\theta}{dt};$$
(11)

$$\overset{\square}{\rho} = \frac{d^2 \rho}{dt^2} = \frac{d}{dt} \left(\frac{d\rho}{dt} \right) = Rtg^2 \beta e^{-\theta \cdot tg\beta} \cdot \left(\frac{d\theta}{dt} \right)^2 + \left(-Rtg\beta \right) e^{-\theta \cdot tg\beta} \cdot \frac{d^2 \theta}{dt^2} = = Re^{-\theta \cdot tg\beta} \cdot tg\beta \left(tg\beta \cdot \theta^2 - \theta \right).$$
(12)

Тогда с учётом угла наклона ступени β (рис.1.) и (9), получаем

$$F_{\rm R} = fN\sin\beta + m\omega^2 Re^{-\theta \cdot tg\beta} - 2m\omega\theta Re^{-\theta \cdot tg\beta}\cos\beta -$$

$$-N\cos\beta - mg\cos\gamma + m\omega^2 Re^{-\theta \cdot tg\beta}A\phi^{\rm X}$$
(13)

и 1-ое уравнение движения, после подстановки в него (13), примет вид

$$m\left[\operatorname{Re}^{-\theta\cdot tg\beta} tg\beta \left(\begin{array}{c} 0 \\ \theta \\ \theta \\ tg\beta - \theta \\ \end{array} \right) - \operatorname{Re}^{-\theta\cdot tg\beta} \begin{array}{c} 0 \\ \theta \\ \end{array} \right] = N\left(f\sin\beta - \cos\beta\right) +$$
(14)

 $+m\omega^{2} \operatorname{Re}^{-\theta \cdot tg\beta} - 2m\omega \overset{\sqcup}{\theta} \operatorname{Re}^{-\theta \cdot tg\beta} \cos\beta - mg\cos\gamma + m\omega^{2} \operatorname{Re}^{-\theta \cdot tg\beta} A\varphi^{X}$

или после упрощений, заменяя $f = \frac{\sin \phi_M}{\cos \phi_M}$, имеем

$$-m \operatorname{Re}^{-\theta \cdot tg\beta} \begin{bmatrix} \Box^{2} (1 - tg^{2}\beta) + \overline{\theta} tg\beta \\ \Theta \end{bmatrix} = \frac{-N \cos(\varphi_{M} + \beta)}{\cos \varphi_{M}} + m\omega^{2} \operatorname{Re}^{-\theta \cdot tg\beta} - (15)$$
$$-2m\omega \overline{\theta} \operatorname{Re}^{-\theta \cdot tg\beta} \cos \beta - mg \cos \gamma + m\omega^{2} \operatorname{Re}^{-\theta \cdot tg\beta} A\varphi^{X}.$$

Отсюда после преобразований

$$N = \frac{\left\{m R e^{-\theta \cdot tg\beta} \left[\omega^{2} (1 + A \phi^{X}) - 2\omega \theta \cos \beta + \theta^{2} (1 - tg^{2}\beta) + \theta tg\beta\right] - mg \cos \gamma\right\} \cos \phi_{M}}{\cos(\phi_{M} + \beta)}, \quad (16)$$

где ү находим из (7).

Подставляя β = 0 получаем уравнение определения N для гладкой футеровки, что подтверждает правильность уравнения (16)

Из условия ${\rm N}=0$ и сокращая на mR, находим угол отрыва загрузки от ступенчатой футеровки

$$\gamma_{0} = \arccos e^{-\theta tg\beta} \left[\omega^{2} (1 + A\phi^{X} \cos\beta) - 2\omega \overset{\Box}{\theta} \cos\beta + \overset{\Box}{\theta}^{2} (1 - tg^{2}\beta) + \overset{\Box}{\theta} tg\beta \right] \cdot \frac{R}{g}.$$
(17)

Подставляя β = 0, получаем уравнение для угла отрыва от гладкой футеровки, что подтверждает правильность формулы (17).

При решении дифференциального уравнения (15) получаем ряд значений θ , $\bar{\theta}$ от времени скольжения t. Для определения угла отрыва в формулу (16) надо ставить значение $\bar{\theta}$, при котором давление загрузки на футеровку N по формуле (16) равно 0. Для этого решают уравнение (16) до появление первого отрицательного значения N и находят значение $\bar{\theta}$ путём интерполяции последнего положительного и первого отрицательного упривание N.

Для определения угла скольжения θ , скорости скольжения $\bar{\theta}$ и ускорения $\bar{\theta}$ составляем второе уравнение движения. Для этого надо взять производную

$$\frac{d\left(\rho^{2}\cdot\overset{\Box}{\theta}\right)}{dt} = \frac{d\left(R^{2}e^{-2\theta\cdot tg\beta}\cdot\overset{\Box}{\theta}\right)}{dt} = -R^{2}2tg\beta e^{-2\theta\cdot tg\beta}\overset{\Box}{\theta}^{2} + \overset{\Box}{\theta}R^{2}e^{-2\theta\cdot tg\beta} =$$

$$= R^{2}e^{-2\theta\cdot tg\beta}\left(\overset{\Box}{\theta} - 2tg\beta\cdot\overset{\Box}{\theta}^{2}\right).$$
(18)

Подставляя (18) в левую часть второго уравнения (8), а в правую значение F_{τ} получаем

$$\frac{m(Re^{-2\theta \cdot tg\beta})^2 \left(\overset{\square}{\theta} - 2 \overset{\square}{\theta}^2 tg\beta \right)}{Re^{-\theta \cdot tg\beta}} = mg \sin\gamma - fN \cos\beta - N \sin\beta - 2m\omega \overset{\square}{\theta} Re^{-\theta \cdot tg\beta} \sin\beta, \quad (19)$$

после преобразований

$$m \operatorname{Re}^{-\theta \cdot tg\beta} \left(\stackrel{\square}{\theta} - 2 \theta^{2} tg\beta \right) = mg \sin \gamma - \frac{N \sin (\phi_{M} + \beta)}{\cos \phi_{M}} - 2m\omega \stackrel{\square}{\theta} \operatorname{Re}^{-\theta \cdot tg\beta} \sin \beta.$$
(20)

Подставляя значение N из (18) в уравнение (20) и после преобразований получаем дифференциальное уравнение 2-ого порядка, решая которое численным методом Рунге-Кутта находим значения θ , $\stackrel{\square}{\theta}$ и $\stackrel{\square}{\theta}$

$$Re^{-\theta \cdot tg\beta} \left[\stackrel{\square}{\theta} - 2 \stackrel{\square}{\theta}^{2} tg\beta \right] =$$

$$= g \sin \gamma - \left\{ Re^{-\theta \cdot tg\beta} \left[\omega^{2} (1 + A\phi^{os}) - 2\omega \stackrel{\square}{\theta} \cos \beta + \stackrel{\square}{\theta}^{2} (1 - tg^{2}\beta) + \stackrel{\square}{\theta} tg\beta \right] - g \cos \gamma \right\} \times \qquad (21)$$

$$\times tg (\phi_{M} + \beta) - 2\omega \stackrel{\square}{\theta} Re^{-\theta \cdot tg\beta} \sin \beta,$$

после преобразований имеем

$$\overset{\Box}{\theta} \operatorname{Re}^{-\theta \cdot tg\beta} - \overset{\Box^{2}}{\theta} \operatorname{Re}^{-\theta \cdot tg\beta} 2tg\beta - g\sin\gamma + \operatorname{Re}^{-\theta \cdot tg\beta} \cdot \omega^{2}(1 + A\phi^{X})tg(\phi_{M} + \beta) - \overset{\Box}{\theta} \operatorname{Re}^{-\theta \cdot tg\beta} \cdot 2\omega\cos\beta tg(\phi_{M} + \beta) + \overset{\Box^{2}}{\theta} \operatorname{Re}^{-\theta \cdot tg\beta} tg(\phi_{M} + \beta)(1 - tg^{2}\beta) + \overset{\Box}{\theta} \operatorname{Re}^{-\theta \cdot tg\beta} tg\beta \cdot (22) \cdot tg(\phi_{M} + \beta) \cdot -g\cos\gamma tg(\phi_{M} + \beta) + 2\overset{\Box}{\theta} \omega\operatorname{Re}^{-\theta \cdot tg\beta} \sin\beta = 0.$$

Группируя, получаем

$$Re^{-\theta \cdot tg\beta} \left\{ \begin{array}{l} \overset{\square}{\theta} \left[1 + tg\beta tg(\phi_{M} + \beta) \right] + \overset{\square}{\theta}^{2} \left[tg(\phi_{M} + \beta) (1 - tg^{2}\beta) - 2tg\beta \right] + \\ + \overset{\square}{\theta} 2\omega \left[\sin\beta - \cos\beta tg(\phi_{M} + \beta) \right] \right\} + tg(\phi_{M} + \beta) (Re^{-\theta \cdot tg\beta} \omega^{2}(1 + A\phi^{X}) - g\cos\gamma) - \quad (23) \\ -g\sin\gamma = 0, \end{array}$$

где ү берём из (17).

Обычно фактические параметры скольжения определяют кино-фотосъёмкой кинематики движения загрузки через прозрачный торец лабораторной мельницы или тензометрическим методом [3]. Все данные по кинематике движения шаровой загрузки, полученные кино-фотосъёмкой, требуют корректировки. Это связано с тем, что они, как правило, получены без наличия в мельнице измельчаемого материала с целью устранения пыления и получения чётких фотоснимков. В качестве имитатора измельчаемого материала можно использовать материалы, не дающие пыления и имеющие коэффициент трения и размер, аналогичный размеру заменяемому материалу. Более точным но, относительно сложным является определение угла отрыва шаров с помощью тензометрии нормальных нагрузок на футеровку, что является единственным способом для промышленных мельниц.

Для учёта влияния измельчаемого материала можно воспользоваться результатами работы [6], показывающими увеличение угла подъёма загрузки, что объясняется увеличением сил сцепления шаров с футеровкой. Так, изменение степени заполнения на 0,05 увеличивает угол подъёма на 3-5⁰, а наличие материала – на 14-21⁰ (большие значения для футеровок с большим коэффициентом сцепления).

Уравнения были решены численным методом Рунге-Кутта. На рис. 2 и в таблице даны фрагменты результатов расчётов.

Рисунок 2 – Параметры скольжения загрузки по гладкой футеровке при R=0,24 м., ϕ =0,3 и скоростном коэффициенте 0,8:

а) зависимость N / m от времени скольжения;

б) зависимость угла (1) и скорости (2) скольжения от времени скольжения

П	араметры скольжения	загрузки	при	скоростном	1 коэфо	рициенте (),8 и I	R =	0,2	4	M
---	---------------------	----------	-----	------------	---------	------------	---------	-----	-----	---	---

φ	α _{с,} град.	t,c	Ө, град	γ ₀ , град	α _{п,} град.
0.25	44,8	0,22	20,4	73	107
0,23	66,8	0,22	19,4	63	117
0.20	49,3	0,24	24,7	62	118
0,50	74	0,24	22,0	53	127
0.25	55,0	0,24	22,7	45	135
0,33	85,0	0,24	27,7	39	141

Примечание: в числителе – гладкая футеровка, в знаменателе – ступенчатая.

Как видно из таблицы с увеличением степени заполнения φ угол начала скольжения α_{r} , угол скольжения θ и угол подъёма α_{π} (т.е. 180- γ_{0}) увеличиваются. Для ступен-

чатой футеровки углыα_с и α_п больше, чем для гладкой в связи с наличием даже небольшой ступени в 12⁰ и соответственного увеличения коэффициента сцепления.

Результаты расчётов уравнений, предложенных в [1,2] для гладкой футеровки, противоречат результатам Ельцова М.Ю., согласно которым увеличение степени заполнения φ и скоростного коэффициента уменьшают скольжение, причём от φ резче.

Достоинством разработанных автором зависимостей является возможность определения по ним условий перехода от каскадного режима работы шаров к водопадному. Делается это из условия равенства нулю величины нормальной нагрузки N за счёт варьирования степени заполнения и частоты вращения корпуса для мельниц с регулируемым приводом, а также путём изменения угла наклона ступенчатой футеровки из прокатных элементов. Если N не достигает нуля, то загрузка поднимается на определённую высоту но не отрывается от футеровки, а скользит вниз и совершает колебательные периодические перемещения (рис. 2).

Выполненные автором по различным методикам расчёты параметров скольжения загрузки и анализ полученных результатов показывают, что каждая из них применима для определённого диапазона условий работы трубных мельниц, а результаты иногда противоречивы. Всё это подчёркивает необходимость дальнейших исследований по созданию универсальной математической модели движения загрузки с учётом скольжения её по футеровкам различного профиля.

Литература

1. Сланевский А.В., Подъячева И.Б. К вопросу выбора оптимального режима работы трубной мельницы. – Труды Гипроцемента, вып. 32, –Л., 1966,–С. 29-46.

2. Сланевский А.В., Подъячева И.Б. Исследование движения мелющей загрузки в барабане трубной мельницы. Труды Гипроцемента. Вып.XXXV.– Л., 1968.–С.161-172.

3. Крюков Д.К. Футеровки шаровых мельниц – М.: Машиностроение, 1965. – 184 с.

4. Иванов А.Н. Определение режимов работы трубных мельниц с учетом скольжения загрузки // Інтегровані технології та енергозбереження . – Харків: ХДПУ. – 2001. – № 4. – С. 22-41.

5. Иванов А.Н., Кулаенко О.А. Расчет скольжения мелющей загрузки в барабанных мельницах–// Інтегровані технології та енергозбереження. – Харків: ХДПУ. – 2003. – № 1. – С. 90-106.

6. Щенников, А.Н. Пироцкий В.З., Несмеянов Н.П. Влияние параметров бронефутеровки с переменным коэффициентом сцепления из прокатных элементов БРОПЭКС на кинетику и эффективность процесса измельчения. Сборник научных трудов БТИСМ. Совершенствование техники и технологии измельчения материалов. Белгород.– 1989.–С. 125-144.

УДК 621.926.5

Іванов А.М.

ПРО КОВЗАННЯ ЗАВАНТАЖЕННЯ ТРУБНИХ МЛИНІВ

В статті наведені аналітичні залежності та результати розрахунків робочих режимів трубних млинів з урахуванням ковзання молольного завантаження по футерівкам різних типів.