УДК 677. 862. 516. 22

Тарануха Я.А., Каратеев А.М.

ПРИДАНИЕ ОГНЕЗАЩИТНЫХ СВОЙСТВ ТКАНЕВЫМ МАТЕРИАЛАМ НА ОСНОВЕ НАТУРАЛЬНЫХ И СИНТЕТИЧЕСКИХ ВОЛОКОН

Национальный технический университет «Харьковский политехнический институт»

В настоящее время проблема огнезащитных текстильных материалов приобретает исключительное внимание исследователей, работающих в области создания новых типов замедлителей горения, вследствие участившихся пожаров в условиях бытового проживания людей, а также в местах общественного скопления людей (театры, кинотеатры, дискотеки, супермаркеты, детские учреждения, больницы, авиатранспорт, суда дальнего плавания и т.п.).

Вследствие специфики физической формы текстильных материалов (толщина, масса 1 м^2) замедлители горения должны обладать высокой эффективностью, количество введённого антипирена не должно превышать 15-20 % от массы текстильного материала.

Наиболее распространенным методом огнезащитной обработки текстильных материалов является поверхностная обработка, которая обеспечивает получение свойств, отвечающих основным требованиям к антипиренам:

- водорастворимость и стабильность растворов при хранении
- наличие функциональных групп, способных реагировать с волокнообразующим полимером с образованием прочных химических связей или комплексов
- малая токсичность и отсутствие вредных летучих соединений в процессе огнезащитной обработки, а также отсутствие токсичных веществ в процессе термического разложения антипиренов в газовой фазе.

Для огнезащиты шерстяных материалов используют галогенорганические кислоты и комплексные соединения металлов переменной валентности [1].

Наиболее остро стоит проблема создания замедлителей горения для синтетических тканей (особенно для полиамидных и полиэфирных) и смесевых тканей (натуральные и синтетические волокна).

Кроме устойчивости тканевых материалов к горению предъявляются и другие требования:

- устойчивость к прожиганию искрами и брызгами металла;
- устойчивость к действию ультрафиолетового излучения;
- устойчивость к многократным стиркам и химической чистке.

Последние три требования возможны к реализации лишь в том случае, если антипирены относятся к категории реактивных, т.е. имеющие реакционноспособные полифункциональные группы, которые способствуют образованию на поверхности или в объёме текстильного материала структурной полимерной сетки.

По состоянию и развитию работ в области производства и применения антипиренов в настоящее время достаточно большое число научных публикаций и обзоров [1–4] с использованием различных синергистов – красного фосфора, полифосфатов аммония, меланина, гуанидина и гуаномочевины [5–8], а также с использованием ненасыщенных хлорсодержащих олигомеров [9].

Для создания долгосрочной огне-, искро-, светозащитной отделки тканей нами использован бисакриловый эфир дибромнеопентилгликоля (БАПЭ) в совокупности с водорастворимыми полифосфатами аммония, которые закрепляются на поверхности и в объёме тканевого материала с помощью БАПЭ.

Полимерная пространственная сетка, образующаяся при термической или каталитической полимеризации БАПЭ на ткани при температуре 110–120 °C, хорошо удерживает полифосфаты аммония, при этом сохраняется структура тканей основы, ткани становятся устойчивыми к искрам и брызгам расплавленного металла с температурой 900–1000 °C. Повышается устойчивость тканей к мокрым обработкам и химическим чисткам без снижения огнезащитных свойств [10].

Используемые полифосфаты аммония (ПФА), содержащие катионы меди, цинка, алюминия, железа, марганца соответствуют нормам ТУ 6-47-81-90 и впервые получены в условиях опытного производства в Крымском НПО «Йодобром».

Брутто формула $\Pi \Phi A$ – $x Me \cdot y(NH_4) \cdot z)(P_2O_5)$, где Me^{n+} – Fe^{3+} , Al^{3+} , Cu^{2+} , Zn^{2+} , Mn^{2+} , x, y, z – процентное содержание элементов в составе сложной соли, а x – обычно до 2%.

Бисакриловый эфир дибромнеопентилгликоля соответствует нормам ТУ 6-47-113-88.

ПФА	Металл	Содержание P_2O_5 ,	Содержание азота,	рН раствора
		%	%	солей
ПФА-1	Fe ³⁺ , Al ³⁺	26,88	15,83	6,9
ПФА-2	$Fe^{3+}, Al^{3+}, Cu^{2+}$	22,21	16,98	7,0
ПФА-3	$Al^{3+}, Zn^{2+}, Mn^{2+}$	20,37	12,10	6,9
ПФА-4	Cu^{2+} , Al^{3+} , Zn^{2+}	27,90	12,34	7,1

Таблица 1 – Состав ПФА

В работе исследования приведены по 2-х ванному методу.

Таблица 2 – Зависимость огнестойкости тканей к устойчивости к прожиганию каплями расплавленного металла льнохлопкотерлоновой ткани, обработанной П Φ A и БАПЭ

Содержание		жание	Стойкость к	Остаточное		Стойкость к
Тип ткани	на ткани		прожиганию	горение/тление		прожиганию
			при 900-	после к	онтакта	после стирки,
	ПФА-	БАПЭ	1000°С, сек	с плам	енем в	сек
	1			тече	ение	
				10 сек	30 сек	
льнохлопкотерлоновая	15,0		83	0/0	0/0	отсутствует
льнохлопкотерлоновая	12,5	10,8	106	0/0	0/0	86
льнохлопкотерлоновая	22,0	18,0	128	0/0	0/0	не определя-
						ется
льнохлопкотерлоновая	32,0	15,2	178	0/0	0/0	не определя-
						ется
льнохлопкотерлоновая	20,0	23,8	275	0/0	0/0	68
льнохлопкотерлоновая	20.0	10,5	300	0/0	0/0	90

 $\Pi\Phi A$ растворялись в воде с содержанием $\Pi\Phi A$ от 25 г/л до 100 г/л. БАПЭ получали реакцией конденсации дибромнеопентилгликоля с акриловой кислотой в толуоле с азеотропной отгонкой воды.

Для пропитки тканей применялись толуольные растворы БАПЭ с концентрацией от 40 г/л до 120 г/л.

Полульняные ткани или льнохлопкотерлоноые (основа — хлопок + 20 % терлона; уток — лён + 20 % терлона) обрабатывают водными растворами ПФА различной концентрации при температуре 18±5 °C, высушивают при температуре 100–110 °C. Затем ткани обрабатывают растворами БАПЭ в толуоле при температуре 18±5 °C с последующей полимеризацией БАПЭ (без инициатора) при 110–120 °C в течение 25–35 минут или в присутствии димерных комплексов цинка $(R_4N)^+_2\cdot[Zn_2Cl_6]^-$, $(R_4P)^+_2\cdot[Zn_2Cl_6]^-$, где R_4N^+ , R_4P^+ — катионы аммониевых или фосфониевых солей, при температуре 100 °C в течение 10–15 минут.

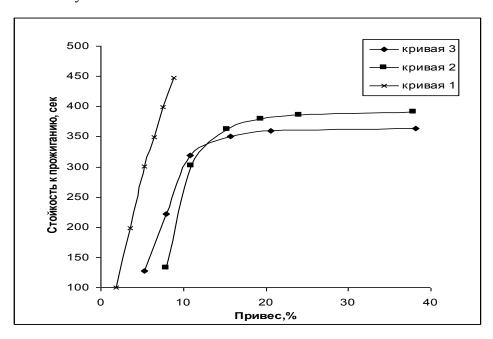


Рисунок 1 — Зависимость стойкости льнохлопкотерлоновой ткани к прожиганию каплями расплавленного металла с температурой 900–1000 °C

Кривые: 2 — суммарная массовая доля ПФА и БАПЭ, 3 — массовая доля только БАПЭ, 1 — массовая доля только ПФА

Как видно из табл. 2 и рис. 1, повышение массовой доли антипирена БАПЭ на ткани приводит к некоторому снижению стойкости ткани к прожиганию и поэтому оптимальной концентрацией БАПЭ на тканях следует считать 10-15 масс.%, а $\Pi\Phi A-B$ пределах 20-22 масс.%.

После химической чистки огнезащищенность ткани, обработанной ПФА и БАПЭ, практически не изменяется (табл. 3).

Светостойкость тканей, определяемая по изменению прочности на разрыв, после ультрафиолетового (УФ) облучения представлена в таблице. УФ излучатель — лампа ΠPK -2.

Таблица 3 – Влияние химической чистки (x/ч) на огнезащитные характеристики льнохлопковой, льнохлопкотерлоновой и льняной ткани, обработанной БАПЭ

Mac-	Mac-	Стой	кость	10 cei		кунд		30 секунд			
совая	совая	к прожига-		длина		время оста-		длина		время оста-	
доля	доля	нию, сек		обугленно-		точного		обугленно-		точн	НОГО
ПФА,	БАПЭ			го участка,		ГО]	pe-	го уча	астка,	гој	pe-
%	%			мм ния/тления,		MM		ния/тления,			
						сек				сек	
		до	по-	до	по-	до	по-	до	по-	до	ПО-
		х/ч	сле	х/ч	сле	х/ч	сле	х/ч	сле	х/ч	сле
			х/ч		х/ч		х/ч		х/ч		х/ч
6,7	14,2	47	53	12	7	0/0	0/0	73	86	0/1	0/1
6,3	10,5	52	48	11	23	0/0	0/0	49	99	0/0	0/3
7,2	4,9	54	53	14	20	0/1	0/0	65	85	0/1	0/0
22,0	18,0	128	128	23	20	0/0	0/0	67	72	0/0	0/0
32.0	15,2	178	170	15	15	0/0	0/0	43	48	0/0	0/0
18.0	14,0	71	78	29	20	0/0	0/0	74	88	0/0	0/0

Таблица 4 – Показатели светостойкости льнохлопковой ткани (не обработанной антипиренами с исходной прочностью на разрыв 80 кг/см 2 и обработанной ПФА и БАПЭ)

Антипирен и его содержа-	Остаточная	Остаточная прочность после УФ облу-		
ние на ткани, масс.%	прочность до	чения, %		
	УФ облучения, %	После 120 часов	После 240 часов	
Без антипиренов	100	17,0	15,0	
ПФА-1 (4 %)	95,0	19,5	18,0	
ПФА-1 (9 %)	95,0	18,0	12,0	
БАПЭ (18 %)	84,0	22,0	19,0	
ПФА-1(18 %)+БАПЭ(32 %)	88,0	43,0	29,0	
ПФА-1(20%)+БАПЭ(10,5%)	92,0	46,0	34,0	

Таблица 5 — Показатели светостойкости льнохлопкотерлоновой ткани (не обработанной антипиренами с исходной прочностью на разрыв $83,7~{\rm kr/cm^2}$ и обработанной ПФА и БАПЭ)

Антипирен и его содержание на ткани, масс.%	Остаточная прочность до	Остаточная прочность после УФ облучения, %		
	УФ облучения, %	После 120 часов	После 240 часов	
Без антипиренов	100	93,0	77,0	
ПФА-1 (8 %)	92,0	40,0	31,0	
БАПЭ (18 %)	97,0	93,0	77,0	

72,0	ПФА-1(10%)+БАПЭ(10,5%)	92,0	84,0	60,0
------	------------------------	------	------	------

Как видно из таблиц 2–5, при придании тканям полной огне-, искро- защищённости обеспечивается также защищённость тканей от УФ облучения и при этом ткани сохраняют значительную остаточную прочность.

Таким образом, в настоящей работе решён вопрос о создании высокоэффективных негорючих тканей, которые можно рекомендовать для спецодежды пожарников, газо-, электросварщиков, газорезчиков и металлургов из натуральных и смешанных тканей. Тканевые материалы устойчивы к искрам и брызгам расплавленного металла с температурой 900–1000 °C. Ткани сохраняют огнезащитное действие после химической чистки, мыльно-содовой обработки (стирка), не обладают токсическими действиями на кожные покровы человека. По данным медико-биологических исследований, тканевые материалы относятся к IV классу токсичности, т.е. абсолютно нетоксичны. Устойчивость тканей к искрам и брызгам расплавленного металла с температурой 900–1000 °C позволяет использовать ткани для спецодежды металлургов и при этом ткани обладают ещё одной особенностью – они влаго-, воздухопроницаемы, т.е. могут обеспечить нормальный теплообмен с окружающей средой.

Литература

- 1. Тюганова М.А. Специфика требований к замедлителям горения текстильных материалов // Состояние и развитие работ по производству применению антипиренов. Тезисы докл. Всесоюзного совещания. г. Саки. 9-11.10.1990 г. С. 14–15. НИИТЭХим. (г. Черкассы).
- 2. Kicko-Walczak Ewa. Stady on flame retardant un saturated polyester resins an overview of past and new developments // 38 th. Macromolecular IUPAC Symposium. Warsaw. 9–14 July, 2000. P. 1305.
- 3. Новиков И.А., Бахтина Г.Д., Когнов А.Б. Полимерные материалы с пониженной горючестью. // Материалы 4 международной конференции. Волгоград, 17–20 окт. 2000. Волгоград. Политехник 2000. с. 92–106. РЖХим.2003, № 1.,19.— с. 331.
- 4. Пат. США, № 6258298, МПК⁷, С09К21/00, С09К21/02, Flame retardant compositions utilizing amino condensation compounds // Blount David H. № 09/149847, заявл. 08.09.1998, опубл. 10.07.2001. РЖХим. 2003, № 2, 19У200П.
- 5. Заявка 1116773 ЕПВ, МПК⁷,С09К21/00, С09К21/12, Flame retardant compositions and flame retardant resin compositions // Hara Yoshiusa, Tamura Ken, Nishimura Takashi, Matsumoto Nobuo, Nippon Chemical Industrial Co. Ltd, № 99938584.2 Зявл.23.08.1999, опубл.18.07.2001. РЖХим. 2001, № 23, 19Т68П.
- 6. Пат. 2224775, Россия, МПК $^{\prime}$, С09Д5/18, огнезащитная вспучивающаяся краска // Захваткин С.С., Фасюра В.Н., Владиславлева Е.Ю., № 2003110927/04, заявл. 17.04.2003, опубл.27.02.2004, РЖХим. 2004 № 10.
- 7. Егоров В.В., Григорьев Ю.А., Халтуринский Н.А., Берлин А.А., Полимерные материалы пониженной горючести // Тезисы докладов 5 международной конференции, Волгоград, 1-2 окт. 2003, Волгоград, Политехник, 2003. РЖХим. 2004. № 2, 19У222.
- 8. Пат.2208028, Россия, МПК7, С09Д5/18, огнезащитная композиция // Аликин В.Н., Кузмицкий Г.Э., Сегина Г.Ю., Чернышова С.В. и др., № 20021-2481/04, заявл. 28.01.2002, опубл.10.07.2003, РЖХим. 2004 № 1,19У184П.
- 9. Вологиров А.К. Ненасыщенные хлорсодержащие олигомеры и полимеры на их основе с пониженной горючестью // Весник Кабар.-Балк. гос. ун-та. Серия Хим. 2003, № 5, с. 87, РЖХим. 2004 № 20, 19.— С. 373.

МОДЕЛИРОВАНИЕ ПРОЦЕССОВ ПРОМЫШЛЕННОГО ОБОРУДОВАНИЯ

10. Пат. 2028400, Россия, МПК 7 , ДО6М,11/72, 13/236, С09К21/04, 21/08 // Д06М 101:06,101:36. Способ огнезащитной отделки целлюлозосодержащих текстильных материалов // Крюгенкова Л.В., Лавренова Л.В., Самохвалов Е.П., Рило Р.П., Каратеев А.М.