УДК 623.438.1

Кебало П.В., Мормило Я.М., Радченко И.Г., Соловей С.А., Угненко Д.Н.

БАЗОВЫЙ ТИП ХОДОВОЙ ЧАСТИ ДЛЯ ПЕРСПЕКТИВНОГО ТАНКА

Введение. В настоящее время в Украине на вооружении сухопутных войск состоят танки, разработанные и выпускавшиеся еще во времена Советского Союза. К настоящему моменту подавляющее большинство из них уже не отвечают современным требованиям, предъявляемым по подвижности, а заложенный в конструкциях их ходовых частей ресурс практически полностью исчерпан. В связи с этим, в Украине, актуальной задачей стоит разработка танка, отвечающего всем требованиям настоящего времени и с большим потенциалом для модернизации. Естественно, что при тех потребностях, которые сегодня испытывают Вооруженные Силы Украины (ВСУ), и сложившейся технико-экономической ситуацией в стране, освоение принципиально новой конструкции потребует весьма значительных затрат. Выходом из данной ситуации может быть использование отработанных конструкторско-технологических решений с соответствующими доработками.

Цель работы – выработка рекомендаций по выбору конструкции ходовой части перспективного танка для ВСУ.

Основная часть. Сравнительная оценка конструкций и характеристик ходовых частей танков Т-64, Т-72, Т-80 и их модификаций.

Конструкции всех трех типов ходовых частей (T-64, T-72, T-80) по основным узлам и деталям не взаимозаменяемы, обладают существенными отличиями, и, как следствие, требуют наличия в войсках большой номенклатуры запасных частей, инструмента и приспособлений для обслуживания и ремонта.

Выделим основные конструктивные отличия ходовых частей вышеперечисленных танков, которые предопределяют номенклатуру требуемых запасных частей, инструментов и приспособлений.

По гусеничному движителю:

- типа Т-64 имеет гусеницу со стальной беговой дорожкой и параллельным резинометаллическим шарниром (РМШ), опорные и поддерживающие катки (ОК и ПК) со стальным ободом и внутренней амортизацией, ОК выполнен в сборе со ступицей;
- типа T-80 имеет гусеницу с обрезиненной беговой дорожкой и параллельным РМШ, ОК и ПК с наружной амортизацией, ОК выполнен со съемными (легкозаменяемыми) массивными шинами;
- типа Т-72 имеет гусеницу со стальной беговой дорожкой и последовательным РМШ, ПК со стальным ободом и внутренней амортизацией, ОК с наружной амортизацией в сборе со ступицей.

По системе подрессоривания:

- все танки имеют индивидуальную торсионную подвеску;
- типа Т-72 лопастные гидроамортизаторы;
- типа Т-64 и Т-80 телескопические гидроамортизаторы.

Основные параметры типов ходовых частей представлены в табл. 1.

Как видно из таблицы 1, основные параметры всех типов ходовых частей примерно одинаковы, при этом следует отметить, что допускаемые нагрузки на ОК существенно отличаются (примерно на 10–20 %), что говорит о разном потенциале модернизации каждой конструкции.

Таблица 1

Тип	Наименование	Обозначение танка			
параметров	параметра	T-64	T-72	T-80	
Подвеска	Кол-во, шт.	1:	12		
	Радиус балансира, мм	380	250	350	
	Средняя жесткость, кН/м	220	265	223	
	Средние статические хода	90	107	120	
	катков, мм				
	Средние динамические хода	245	271	265	
	катков, мм				
Амортизаторы	Кол-во на борт, шт.	3	3	3	
	Сопротивление прямого				
	хода при скорости 1м/с, кН	90	40	120*	
	Площадь охлаждения, м ²	0,226	0,38	0,339*	
	Рассеиваемая мощность,	2,5	3	3,5*	
	кВт (при разности темпера-				
	тур 100 °С)				
Опорный каток (ОК)	Диаметр и ширина обода,	555×95	750×190	670×170	
	MM	(общая)			
	Кол-во ободьев, шт.	2	2	2	
	Максимально допустимая	4200	5100	4600	
	нагрузка на опорный каток,				
T	КГ	0		10%	
Поддерживающий ка-	Кол-во на изделии	8	6	10*	
ток	Диаметр и ширина обода	225×62	204×80 225×125		
Направляющее колесо с	Тип механизма	Кривошипно-червяч	ный, механический		
механизмом натяжения	Обод направляющего коле-	Идентичный ОК и	Литой из		
	ca	взаимозаменяемый с	спецстали		
D	10	ним	1.4	10	
Ведущее колесо	Количество зубьев венцов	12	14	12	
	Ограничители сброса гусе-	На зубьях венцов	-	ительные	
E	ницы	164	кольца на дисках		
Гусеницы	Шаг, мм	164	137	164	
	Ширина, мм	540	580	580	
	Кол-во траков, шт.	79–78	108	80	

^{*} данные для модификации Т-80УД

Проведем сравнительный анализ 3 типов ходовых частей по следующим основным критериям, определяющим их качество:

- надежность, характеризующаяся параметром потока отказов (W) определяемым по формуле:

$$W = (Q \cdot 1000) / (q \cdot V),$$

где Q – общее количество отказов; q – количество испытуемых изделий; V – объем испытаний, км [6];

- проходимость по различным грунтам;
- взаимная унификация узлов и возможность создания семейства машин различного назначения на одной базе;
 - освоенность конструкции заводами Украины;
- технико-массовые показатели, включающие массу узлов и деталей ходовой части и затраты мощности в гусеничном движителе на различных скоростях движения;
- эргономические показатели, характеризующие обитаемость экипажа плавность хода и вибронагруженность.

При проведении сравнительной оценки всех трех типов ходовой части возможных к применению в конструкции перспективного танка Украины будем руководствоваться результатами сравнительных испытаний танков Т-64, Т-72, Т-80 и их модифика-

ций в различных почвенно-климатических условиях. Результаты испытаний представлены в таблице 2.

Таблица 2

Наименование	Наименование показателей	Обозначение танка		
параметра		T-64	T-80	T-72
Надежность	Средние скорости движения машин,	2038,3	23,651,7	23,641,9
(по данным испыта-	км/ч			
ний в период 1976-	Параметр потока отказов (W):	0,2	0,49	0,22
1984 г.г.)	– при объеме испытаний до			
	6000 км. [6]			
	 при объеме испытаний от 6000 до 10000 км. [2] 	0,17	0,67	1,25
Проходимость	На заснеженных участках [1]	Преодолевают участки длиной более 30 м с глубиной снежного покрова до 1 м без застреваний		
	На заболоченной местности (количе-	11/0	13/3	12/4
	ство опытов/кол-во застреваний) [3]			
Плавность хода	– высота проходной неровности, м [5]	0,13	0,145	0,15
Технико-массовые	Общая масса узлов ходовой ча-	6217/152	8386/780	8482/1110
показатели	сти/масса узлов изготовленных из			
	цветных металлов, кг			
	Средние относительные затраты мощ-	1	1,305	1,123
	ности на перематывание гусениц и			
	качение ОК при скоростях движения			
	от 5 до 15 м/с (за базовые приняты			
	показатели танка Т-64), кВт [7]			
Вибронагруженность	Место измерений:			
при движении по	 – башня, в районе левого оператора 	1,8/3	1/3	-
бетонной трассе, в	– корпус на борту в районе 4-й под-	712/6	46/6	-
единицах «g» (полу-	вески			
ченное [4] допускае-	– МТО и днище	812/10	10/10	-
мое значение [8])				

Из таблицы видно, что в исследованных параметрах надежности, подвижности и экономичности, таких как кол-во отказов, кол-во ремонтов на одно изделие, прохождение болот, общая масса узлов, затраты мощности — ходовая часть танка Т-64 и его модификаций имеет лучшие показатели, при этом имея и большую вибронагруженность.

Наибольшие кол-ва отказов ходовой части танков типа Т-72 и Т-80 приходятся на разрушение резиновых шин опорных катков [1,2,6], что стало следствием стремления снизить вибронагруженность элементов ходовой части и не могло не учитываться при проектировании данных конструкций.

Исходя из многолетнего опыта производства, испытаний и эксплуатации можно отметить следующие недостатки присущие каждому типу ходовой части:

- 1. Для танков типа Т-64:
- повышенная вибронагруженность элементов ходовой части [4];
- отсутствие узловой установки поддерживающих катков;
- трудоемкая операция замены трака гусеницы;
- высокая тепловая напряженность подшипниковых узлов.
- 2. Для танков типа Т-80:
- трудоемкая операция замены торсионных валов подвески, со снятием дисков опорных катков;
- низкая надежность шин опорных катков при эксплуатации на каменистых грунтах из-за повреждения шин посторонними предметами, а также гребнями при сбросе гусеницы;
 - отсутствие узловой установки поддерживающих катков;

- трудоемкая операция замены трака гусеницы;
- 3. для танков типа Т-72:
- трудоемкая операция замены торсионных валов подвески, со снятием опорных катков;
- низкая надежность шин опорных катков при эксплуатации на каменистых грунтах из-за повреждения шин посторонними предметами, а также гребнями при сбросе гусеницы;

Общим для всех изделий является отсутствие автоматического изменения клиренса и натяжения гусениц.

Для повышения эксплуатационных характеристик на опытных образцах танков с ходовой частью типа T-64 были реализованы конструктивные мероприятия включающие:

- установку опорных катков с промежуточными резиновыми амортизаторами для уменьшения износа ободьев и повышения устойчивости гусеницы;
- установку подвесок с увеличенным динамическим ходом, гидроамортизаторов с двухступенчатой характеристикой и торсионных валов дифференцированной жесткости для повышения плавности хода и средних скоростей движения;

Для улучшения эксплуатационных характеристик танков с ходовой частью типа T-80, в данную конструкцию были внесены следующие изменения, включающие:

- уменьшение зазора между отбойниками на борту изделия с внутренним венцом ведущих колес и установлены усиленные реборды дисков с улучшенной контактной поверхностью;
- увеличение радиусов балансиров с 350 мм до 420 мм направленное на увеличение динамических ходов изделия, что также дало возможность производить замену торсионных валов подвески без демонтажа дисков опорных катков, и гидроамортизаторов с двухступенчатой характеристикой для повышения плавности хода и средних скоростей движения.

Кроме всего вышеперечисленного, при выборе типа ходовой части перспективных танков и других боевых машин следует учитывать такой фактор как освоенность конструкции производством.

По данному критерию конструкции ходовых частей танков типа T-64 и T-80 имеют равные права, поскольку данные танки выпускались на Украине, а освоение конструкции ходовой части танков типа T-72 требует значительных затрат на подготовку производства.

Следует также отметить, что в последнее время получили распространение тяжелые боевые машины пехоты, изготовленные на базе танка и имеющие сопоставимую защищенность. Для данных машин ходовая часть танков типа Т-64 более предпочтительна, поскольку уже есть опыт ее применения в конструкции тягача МТ-Т (масса 25 т.), а ходовые части танков типа Т-72 и Т-80 для машин подобных классов не использовались. При этом возможно использование оставшегося на складах большого количества запасных частей танка Т-64 и комплектующих со снимаемых с вооружения танков.

Сейчас в Украине принята программа модернизации танков типа Т-64 до максимально возможного уровня, реализуемого без значительных затрат и первые машины, получившие обозначение БМ «Булат», уже поступили на вооружение ВСУ. Применение данного типа ходовой части не потребует дополнительного переучивания специалистов на эксплуатацию новой конструкции.

Выводы: 1. Сравнительные испытания танков Т-64, Т-72, Т-80 и их модификаций, проведенные в различных почвенно-климатических условиях, показали, что все

три типа ходовой части обеспечивают удовлетворительные надежность, маневренность и проходимость при решении сложных задач в условиях приближенных к боевым.

- 2. Вариант ходовой части танка типа Т-64, является на сегодняшний день основным в ВСУ (Из сайта Министерства обороны Украины, по состоянию на 2004 г. на вооружении состояло 2281 танк Т-64, 1302 Т-72 и 273 Т-80 всех модификаций) и, как видно из табл. 2, он имеет больше преимуществ, чем какой-либо другой. По мнению авторов, на сегодняшний день целесообразным является использование данного типа ходовой в конструкциях вспомогательных машин с использованием задела комплектующих хранящегося на складах, а также модернизируемых танков.
- 3. Вариант ходовой части танка типа T-80 освоен производством, имеет больший потенциал для модернизации и является основным для танков, поставляемых в другие страны.
- 4. Поскольку два типа конструкций ходовой части типа Т-64 и Т-80 примерно равноценны по своим характеристикам, для выбора типа ходовой части перспективного танка необходимо проведение в полном объеме сравнительных испытаний танков укомплектованных каждым типом ходовой части. При этом оптимальным вариантом решения будет такая конструкция, при которой возможна установка на один и тот же танк различных вариантов в зависимости от условий эксплуатации и требований покупателей с возможностью их замены без доработок сопрягаемых деталей корпуса и силовой передачи.

Литература

- 1. Акт о результатах войсковых испытаний изд. 219, 447A, 172 выпуска 1979г. Тема 8733 С. 103–104.
- 2. Акт о результатах войсковых испытаний изд. 219, 447A, 172 Тема 9562. С. 199–220.
- 3. Технический отчет по результатам сравнительных испытаний проходимости изд. 219, 434, 172 Тема 6951. С. 80.
- 4. Отчет №100 о результатах сравнительных испытаний по определению вибронагруженности изд. 478Б и 478ДУ. 1993г. С. 8.
- 5. Исследование характеристик изд.219, 434, 172, 162. Тема 7056/7057. 1976 г. С. 62.
- 6. Акты и отчеты о результатах войсковых испытаний изд. 219, 447A, 172 и их модификаций за 1976–93 г.г.
- 7. Теория изделия, под ред. П.П. Исакова, раздел «ходовая часть» Тема 6760 1979 г. С. 236–237.
- 8. ОСТ B2-20.39.045 Комплексная система общих технических требований «Электрооборудование ВГМ».

УДК 623.438.1

Кебало П.В., Мормило Я.М., Радченко І.Г., Соловей С.А., Угненко Д.Н.

БАЗОВИЙ ТИП ХОДОВОЇ ЧАСТИНИ ДЛЯ ПЕРСПЕКТИВНОГО ТАНКУ

Стаття присвячена аналізу конструктивних особливостей та зауважень, отриманих під час експлуатації танків і спрямована на вироблення рекомендацій щодо вибору типу ходової частини перспективного танку.