УДК 66.021.1

Голуб В.Л., Тошинский В.И., Медяник А.В.

ТЕЧЕНИЕ ЖИДКОСТИ ПО НАКЛОННОЙ ГОФРИРОВАННОЙ ПОВЕРХНОСТИ В РЕЗОНАНСНОМ РЕЖИМЕ

Введение. В процессах абсорбции (десорбции) одним из главных параметров, является коэффициент массопередачи *К*. Он определяет скорость, с которой вещество переходит из одной фазы в другую на единице площади контакта "жидкость-газ" (или в единице объёма абсорбционной колонны). Технологически выгодным является максимально высокое значение коэффициента массопередачи. Для плёночных абсорберов, широко распространённых в современных технологиях, коэффициент *К* рассчитывается по формуле:

$$1/K = 1/K_g + m/\beta$$
, (1)

(2)

где K_g и β – коэффициенты массоотдачи, соответственно, в газовой и жидкой фазах, m – константа фазового равновесия. Обычно, $m \le 1$, и значение K определяется соотношением величин K_g и β . Из (1) видно, что могут существовать 3 качественно различных процесса абсорбции:

- *а)* $\beta >> K_g$ –хорошо растворимый (в данной жидкости) газ.
- b) $\beta \approx K_g$ средне растворимый газ;
- с) $\beta << K_g$ плохо растворимый газ;

В случае *b*) и, особенно, *c*) именно значение β является определяющим для величины коэффициента массопередачи *K*, а именно – с возрастанием β увеличивается *K*.

Довольно давно предложен способ увеличения коэффициента β путём нанесения на поверхность, по которой стекает жидкость, периодически расположенных шероховатостей (гофр). В этом случае на поверхности плёнки возникает стоячая волна, при которой массообмен становится более интенсивным. Одновременно возрастает эффективная площадь контакта на границе "жидкость-газ". В данной работе рассчитывается период гофра на подложке, который при заданных параметрах жидкости и газа увеличивает коэффициент β максимальным образом.

Полуэмпирический расчёт коэффициента массоотдачи. Расчёт, предложенный авторами работы [1], дал следующую формулу для коэффициента β :

$$\beta = \beta_0 \left[1 + 0.6(k\alpha)^2 \right] f(\alpha), \tag{3}$$

где β_0 – коэффициент массоотдачи жидкости при течении по плоской подложке; α – безразмерная амплитуда стоячей волны, на свободной поверхности жидкости, измерен-

ная в единицах толщины её плоского слоя δ ; $k = \frac{2\pi}{\lambda}$ – безразмерное волновое число стоячей волны на свободной поверхности; λ – безразмерная длина стоячей волны в единицах δ .

Далее будет показано, что λ совпадает с длиной волны гофра на подложке.

$$f(\boldsymbol{\alpha}) = \begin{cases} 1.22 - 0.12\alpha & \text{при}\,\alpha \le 0.4 \\ 1.1 & \text{при}\,\alpha > 0.4 \end{cases}$$

При наличии газового потока над жидкостью, и, следовательно, касательного напряжения на границе "жидкость-газ", формула (3) приобретает вид [2]:

$$\beta = \beta_0 \left[1 + 0.6(k\alpha)^2 \right] f(\tau);$$
(4)
$$\left[1 + 0.113\tau \ \ddot{\tau} \, \partial \dot{e} \ \tau \le 0.4 \right]$$

$$f(\tau) = \begin{cases} 1.1 + 0.115t \ t \ \partial e^{-\tau} t \le 0.4 \\ 10.04 \frac{\sqrt{\tau}}{(1+5.97\sqrt{\tau})} & \ \ddot{u} \ \partial \dot{e} \ \tau > 0.4 \end{cases}$$

где $\tau = \frac{|T| \cdot \delta}{\mu \overline{V}}$ – абсолютное значение безразмерного касательного напряжения на границе "жидкость-газ"; T – истинное касательное напряжение на границе "жидкостьгаз"; μ – коэффициент динамической вязкости жидкости; \overline{V} – средняя скорость жидкости вдоль слоя δ .

Отметим, что в работе [1] амплитуда волны α считалась заданной, т.е. фактически взятой из эксперимента.

Точный расчёт коэффициента массоотдачи. В принципе, значение α определяется параметрами гофра подложки, и его можно найти из уравнения движения жидкости. Для того, чтобы теоретически получить значение α , нужно, рассчитывая профиль скорости в слое жидкости, учесть наличие:

1) гофра на подложке;

2) газового потока над свободной поверхностью жидкости.

В данной работе, с учётом обстоятельств 1) и 2), производится расчёт величины α , по параметрам жидкости и гофра подложки. Из условия резонанса, которое будет дано ниже, получено оптимальное значение длины волны гофра λ , ведущее к максимальному значению β .

Амплитуда волны, α , определяется решением уравнения для течения жидкости по гофрированной подложке. Если слой жидкости формы h(x, z) движется по наклонной поверхности под действием силы тяжести g и касательного напряжения τ на границе с газовым потоком, то уравнение для такого движения можно привести к виду [3]:

$$V_{z}\frac{\partial V_{z}}{\partial z} - \frac{\partial V_{z}}{\partial x}\int_{x_{1}}^{h}\frac{\partial V_{z}}{\partial z}dx = \frac{1}{Fr}\left(\sin\gamma - \frac{dh}{dz}\cos\gamma\right) + \frac{1}{We}\frac{d^{3}h}{dz^{3}} + \frac{1}{Ra}\frac{\partial^{2}V_{z}}{\partial x^{2}}$$
(5)

с граничными условиями:

3 1001 .

a) $V_z = 0$ при $x = x_1 = \mathscr{S} \sin(kz)$ – прилипание жидкости на гофрированной подложке x_1 ; здесь $\varepsilon < 1$, и $k = \frac{2\pi}{\lambda}$ – заданы; (λ – длина волны гофра на подложке);

b) $\frac{\partial V_z}{\partial x} = \tau$ при x = h(z) – равенство касательных напряжений жидкости и газа на

свободной поверхности; (функция h(z) – пока неизвестна).

х – координата слоя, ортогональная направлению движения жидкости; *z* – координата слоя, параллельная направлению движения жидкости;
$$Fr = \frac{\overline{V}^2}{\delta g \sin \gamma}$$
 – число Фруда;

 $We = \frac{\rho V \delta}{\sigma}$ – число Вебера; $Re = \frac{V\delta}{v}$ – число Рейнольдса; g – ускорение силы тяжести; γ – угол наклона плоскости течения жидкости к линии горизонта; ρ – плотность жид-

 γ – угол наклона плоскости течения жидкости к линии горизонта; ρ – плотность жидкости; σ – коэффициент поверхностного натяжения жидкости; ν – коэффициент кинематической вязкости жидкости.

Уравнение (5) записано для потока бесконечной ширины (координата у), и считается, что $V_z(y) = const$ Реальный эксперимент проводится на полосе конечной ширины $\Delta y = 2Y$, ограниченной стенками при $y = \pm Y$, и зависимость скорости от поперечной координаты имеет вид: $V_z(y) = V_z(0)[Y^2 - y^2]$. Можно считать, что в (5), и везде ниже, $V_z = \overline{V_z(y)}$ (усреднение по координате *y*). Нужно учитывать и то, что уравнение (6) и граничные условия записаны в безразмерных переменных, а именно:

– компонента скорости V_z нормирована на среднюю по толщине слоя жидкости δ скорость \overline{V} :

- координаты – x, z и h(z) – на толщину невозмущённого слоя δ ;

Решение уравнения (5) для $V_z(x)$ ищется в виде квадратичной функции x, как и в случае плоской подложки, но с коэффициентами, зависящими от координаты z:

$$V_{z}(x,z) = a(z)x^{2} + b(z)x + d(z).$$
(6)

Средняя скорость вдоль слоя жидкости по определению равна:

$$\overline{V}(z) = \frac{1}{h - x_1} \int_{x_1}^{h} V_z(x, z) dx.$$
(7)

Подставляя (6) в граничные условия а)-b) в уравнение (5), и пользуясь определением (7), можно получить выражения для a(z),b(z),d(z) и, следовательно, саму скорость $V_z(x,z)$ через \overline{V},h,x_1 . Подставив $V_z(x,z)$ в (5), получим уравнение для h(z). Последнее уравнение решается путём разложения в ряд по малому параметру ε – безразмерной амплитуде гофра на подложке, задаваемой в единицах плоского слоя жидкости δ :

$$h(z) = 1 + \varepsilon h_1(z) + \varepsilon^2 h_2(z) + \dots;$$

$$\overline{V}(z) = 1 + \varepsilon V_1(z) + \varepsilon^2 V_2(z) + \dots$$
(8)

Далее, в линейном приближении по ε , ищем решение в виде:

$$h_1(z) = A\sin(kz + \chi). \tag{9}$$

Это справедливо в так называемом ламинарно-волновом режиме течения слоя жидкости по подложке. Вид решения (10) для $h_1(z)$ означает, что из всех возмущений плоской поверхности «выживает» только стоячая волна с длиной, равной длине гофра подложки $\lambda = \frac{2\pi}{k}$. Этот факт, обнаруженный в реальном эксперименте, даёт возможность упростить решение, и найти связь между параметрами подложки, физическими свойствами жидкости с одной стороны, и амплитудой волны на свободной поверхности жидкости с другой

После выполнения довольно громоздких преобразований можно получить уравнения в безразмерных переменных:

$$A^{2} = \frac{q^{2} + s^{2}k^{2}}{q^{2} + k^{2} \cdot (p - k^{2})},$$
(10)

где

$$q = \frac{3}{2} \frac{We \cdot (6-\tau)}{Ra}; \quad s = \frac{(6-\tau) \cdot (\tau+8)}{40}; \quad p = We \cdot \left[\frac{(6-\tau) \cdot (\tau+8)}{40} - \frac{\cos\gamma}{Fr}\right]. \tag{11}$$

Из цепочки полученных соотношений (9)–(8)–(3) видно, что амплитуда стоячей волны на свободной поверхности жидкости α из (3) связана с амплитудой гофра подложки ε из (8) и величиной A из (9) соотношением $\alpha = \varepsilon A$. В уравнении (10) неизвестными параметрами являются – невозмущённая волной высота слоя жидкости δ , и безразмерное касательное напряжение на границе "жидкость-газ" τ . Эти параметры связаны друг с другом. Так, при заданном массовом расходе жидкости Q на единицу ширины подложки, значение δ определяется средней скоростью \overline{V} из соотношения $\delta = \frac{Q}{\rho \overline{V}}$. Но в профиль скорости, и, следовательно, в \overline{V} , входит параметр τ – ясно, что, чем больше трение τ при противотоке жидкости и газа, тем меньше \overline{V} , и, при задан-

чем больше трение τ при противотоке жидкости и газа, тем меньше V, и, при заданном расходе Q, тем больше значение δ . Поэтому, δ и τ должны определяться одновременно и самосогласованно из системы 2-х уравнений: одно из этих уравнений связано с движением слоя жидкости, второе – с газовым потоком над ней. Профиль скорости в слое жидкости, стекающей по поверхности, которая наклонена под углом γ к горизонту, при наличии касательного напряжения на границе с газовой фазой известен. Он находится аналогично профилю Пуазейля, но при граничных условиях:

$$\mu \frac{\partial V_z}{\partial x}\Big|_{x=\delta} = T ; V_z(x)\Big|_{x=0} = 0$$
(12)

и имеет вид:

$$V_z(x) = \frac{g}{\nu} (\delta \cdot x - \frac{x^2}{2}) \sin \gamma + \frac{T \cdot x}{\mu}.$$
 (13)

Отсюда, для средней по толщине δ , скорости получаем:

$$\overline{V} = \frac{1}{\delta} \int_{0}^{\delta} V_z(x) dx = \frac{g\delta^2}{3\nu} \sin\gamma + \frac{T \cdot \delta}{\mu}.$$
 (14)

Число Рейнольдса определяется как: $\text{Re} \equiv \overline{V}\delta/\nu = g\delta^3 \sin \gamma/3\nu^2 + T\delta^2/\rho\nu^2$, откуда после приведения к безразмерным параметрам, можно получить:

$$(\delta/\delta_0) = (1 - \tau/2)^{1/3}, \tag{15}$$

 $\delta_0 = \left(\frac{3v^2 R a}{g \sin \gamma}\right)^{1/3} -$ толщина слоя жидкости без газового потока; (δ/δ_0) и τ – соответ-

ственно, безразмерные толщина слоя жидкости и касательное напряжение на границе "жидкость-газ". (В случае противотока "жидкость-газ" $\tau < 0$ и $\delta > \delta_0$).

Здесь, число Рейнольдса $\text{Re} = \frac{\delta V}{v}$ считается известным, т.к. в эксперименте задаётся расход жидкости на единицу ширины подложки – $Q_L = \frac{Q}{2Y} = \delta \rho \overline{V}$. Отсюда,

$$\operatorname{Re} = \frac{Q_L}{\rho v}$$

Уравнение (15) – одно из уравнений системы, связывающее δ и τ .

Второе – получается из закона движения газа. Для стационарного течения газа в ламинарном режиме при граничных условиях:

$$\frac{dV_g}{dx}\Big|_{x=\delta} = \frac{T}{\mu_g}; \quad V_g\Big|_{x=H} = 0$$
(16)

можно получить известный параболический профиль:

$$V_{g} = -\frac{T}{\mu_{g}}(H-x) - \frac{\psi - \rho_{g}g\sin\gamma}{2\mu_{g}}\{(H-\delta)^{2} - (\delta-x)^{2}\},$$
(17)

где *H* – высота канала (боковой стенки подложки); $\psi = \frac{\Delta P}{L}$; ΔP – перепад давления газа на длине *L*.

Далее, используя условия равенства скоростей газа (17) и жидкости (13) при $x = \delta$, получим:

$$T = \frac{-\frac{\psi}{2} \left[\frac{(H-\delta)^2}{\mu_g} - \frac{\delta^2}{\mu} \right] + \frac{g \sin \gamma}{2} \left[\frac{(H-\delta)^2}{\nu_g} - \frac{\delta^2}{\nu} \right]}{\frac{H-\delta}{\mu_g} + \frac{\delta}{\mu}}.$$
 (18)

Здесь v и $\mu = \rho v$ относятся к жидкости, а v_g и $\mu = \rho_g v_g - \kappa$ газу. Для малой толщины слоя жидкости $\delta \ll H$, (16) превращается в:

$$T = -\frac{\psi - \rho_s g \sin \gamma}{2} H \,. \tag{19}$$

Если же пренебречь весом газа по сравнению с перепадом давления, то (20) упрощается:

$$T = -\psi H / 2. \tag{20}$$

Уравнения (18)–(20) удобно решать для безразмерной переменой $\tau = \frac{T}{\mu \overline{V}/\delta}$, тогда из определения $\psi \equiv \frac{\Delta P}{L}$ и уравнения (20) следует, что ΔP нужно "обезразмерить, на ту же величину", что и T, т.е. на $\frac{\mu \overline{V}}{\delta}$. Из соотношения $\overline{V} = \frac{v \operatorname{Re}}{\delta}$, получаем, масштабный множитель для перепада давления $\Delta P : \frac{\rho v^2 \operatorname{Re}}{\delta^2}$, и уравнение (21):

$$\tau = \psi H = \left[\frac{H}{L} \frac{\Delta P \delta_0^2}{\rho v^2 R a}\right] (\delta / \delta_0)^2.$$
(21)

Все величины в квадратных скобках уравнения (21) имеют свою естественную размерность, а τ и (δ/δ_0) – безразмерны.

Численно решая систему – (15) + одно из равнений (18)–(21), – находим (δ/δ_0) и τ .

Полное смачивание. Существует ещё одно независимое условие для величины δ . Оно связано с явлением полного смачивания подложки жидкостью, т.е. с отсутстви-

ем сухих пятен. Такие пятна могут появляться из-за поверхностного натяжения на границе «жидкость–подложка», и уменьшать эффективную площадь абсорбции. Условием отсутствия сухого пятна является превышение гидродинамического напора жидкости над величиной касательного напряжения, вызванного поверхностным натяжением.

$$\int_{0}^{\delta} \frac{\rho V^{2}}{2} dx \ge \sigma (1 - \cos \theta), \qquad (22)$$

где θ – угол смачивания на границе «жидкость–подложка»; σ – коэффициент поверхностного натяжения жидкости на подложке.

Если здесь пренебречь малой амплитудой гофра на подложке, но учесть движение газа над свободной поверхностью, то, подставляя в (22) профиль скорости (13), получим уравнение для минимальной толщины слоя жидкости δ_{\min} , при которой отсутствуют сухие пятна:

$$\delta_{\min} = \left[\frac{2\sigma(1-\cos\vartheta)}{\rho C}\right]^{1/5},\tag{23}$$

где

$$C = \frac{g^2 \sin^2 \gamma}{v^2} \left(\frac{2}{15} + \frac{5}{36} \tau \right).$$

Резонансная длина волны гофра. Из формул (10), (4) можно найти длину волны гофра $\lambda = \frac{2\pi}{k}\delta$, при которой шероховатость подложки увеличивает величину β максимальным образом. Это значение k > 0 определяется из условием:

$$\frac{\partial \left(k^2 A^2\right)}{\partial k} = 0, \qquad (24)$$

если $k^2 A^2$ достигает максимума внутри интервала $(0 < k < k^*)$, где k^* – граничное значение k, при котором, вычисленное по формуле (10), $A^2(k) > 0$. Если же такого значения k нет, то искомый максимум находится на самой границе интервала положительной определённости $A^2(k)$, т.е. при $k = k^*$. Именно второй вариант имеет место для функции $A^2(k)$, полученной в (10). Здесь граничное значение k, определяется обращением в нуль знаменателя в формуле (10), а именно уравнением:

$$k^4 - pk^2 - q^2 = 0, (25)$$

откуда

$$k^* = \left(\frac{p + \sqrt{p^2 + 4q^2}}{2}\right)^{1/2}.$$
 (26)

При условии $p^2 >> 4q^2$ из (26) следует:

$$k^* \approx p^{1/2}$$
. (27)

Формально, при $k \to k^*$, функция $A(k) \to \infty$, но это – следствие линейного приближения по амплитуде гофра подложки ε . Такая картина всегда имеет место в случае резонанса – реально, волна на свободной поверхности жидкости при $k = k^*$, либо будет иметь максимально возможную, но конечную амплитуду в ламинарно-волновом режиме, либо движение перейдёт в турбулентное. В обоих случаях коэффициент массоотдачи β увеличится. Из вышесказанного следует, что для достижения максимально возможного коэффициента β шаг гофра на подложке должен быть равен:

$$\lambda = \frac{2\pi}{k^*}\delta.$$
 (28)

Ниже приведены результаты численных расчётов для оптимального периода гофра подложки λ и толщины слоя жидкости δ при заданных параметрах, которые находятся "в руках экспериментатора" – угле наклона поверхности к горизонту γ , числе Рейнольдса Re. Полученные значения относятся к процессу абсорбции триоксида серы водой при перепаде давления в газе $\psi = 60 \, \text{Па/м}$, высоте газового потока H = 0,31.

Угол наклона подложки γ		$\pi/6$			$\pi/4$			$\pi/3$	
Число Рейнольдса Re	100	500	1000	100	500	1000	100	500	1000
Толщина слоя жидко- сти в отсутствие газа – δ_0 (мм)	0,40	0,68	0,85	0,35	0,6	0,76	0,33	0,56	7,09
Толщина слоя жидкости при наличии газа – δ (мм)	0,51	0,78	0,95	0,43	0,68	0,83	0,4	0,62	7,66
Резонансная длина вол- ны гофра подложки – λ (мм)	5,78	2,11	1,42	4,37	1,69	1,15	3,76	1,49	1,02

Оптимальное значение высоты гофра ε не может быть теоретически найдено рассмотренным способом, необходимым условием для применимости выше приведенных формул является лишь условие: $\varepsilon < \delta$.

Выводы. Использование в процессах абсорбции/десорбции поверхности с предварительно рассчитанным шагом гофра приводит к интенсификации массоотдачи в жидкой фазе. Это связано, как с увеличением самого коэффициента массоотдачи при переходе в резонансный режим, так и с увеличением эффективной площади контакта "жидкость-газ" по сравнению с плоской подложкой.

Литература

1. Холпанов Л.П., Николаев Н.А. Расчёт коэффициента массоотдачи в плёнке жидкости, текущей по стенке с регулярной шероховатостью. // Теор.основы хим. технологии.– 1975. – т.9, №4. – с. 590–592.

2. Малюсов В.А., Малафеев Н.А. // Хим. пром.– 1951. – т. 14, №4, с. 110–114.

3. Левич В.Г. Физико-химическая гидродинамика. М., 1952г., 537 с.

4. Воронцов Е.Г. Течение жидкостных плёнок по вертикальной стенке с шероховатой поверхностью // Журн. прикл. химии. – 1969.– т.42, с. 2037–2044.

УДК 66.021.1

Голуб В.Л., Тошинський В.І., Медяник А.В.

ПЕРЕБІГ РІДИНИ ПО ПОХИЛІЙ ГОФРОВАНІЙ ПОВЕРХНІ У РЕЗОНАНСНОМУ РЕЖИМІ

У роботі розглядається процес перебігу рідини по гофрованій поверхні за наявності газового противотоку. Розрахована оптимальна довжина гофра, яка забезпечує резонансний режим та максимально збільшує коефіцієнт масовіддачі фази рідини в процесі абсорбції.

стаття надійшла до редакції 16.09.2008 р.