УДК 621.384.3

Глебов В.В., Роленко С.А.

СИСТЕМЫ ОБНАРУЖЕНИЯ КОМПЛЕКСОВ АКТИВНОЙ ЗАЩИТЫ

Постановка проблемы. Успех защиты танков и других боевых бронированных машин от средств поражения в большой степени зависит от обнаружения последних, предупреждения об их применении и обеспечения эффективного противодействия. В идеале, экипаж должен своевременно обнаружить угрозу и нейтрализовать её. Если это невозможно, то предупреждение о потенциальной угрозе обеспечивает время для принятия контрмер.

В ведущих бронетанкостроительных странах мира ведутся работы по созданию комплексов / систем активной защиты (КАЗ / САЗ) основных боевых танков (ОБТ) и боевых бронированных машин(ББМ). Эти системы должны обеспечивать поражение на подлете к боевым машинам противотанковых управляемых ракет (ПТУР), самоприцеливающихся и самонаводящихся боевых элементов артиллерийских и авиационных боеприпасов, кумулятивных снарядов и выстрелов ручных противотанковых гранатометов (РПГ). Создание эффективных систем обнаружения КАЗ является актуальной проблемой.

Анализ последних достижений и публикаций. Аспекты развития этого направления защиты находят свое отражение в различных источниках. Публикации посвящены описанию принципов действия комплексов и их составных элементов [1–3], характеристикам отдельных комплексов [4–9], состоянию работ по данному направлению в различных странах [10–12] и т.д.

Средством воздействия КАЗ на подлетающий боеприпас является боевая часть системы поражения. Боевая часть должна обеспечить:

- высокую скорость доставки в точку взрыва;
- создание плотного облака высокоскоростных осколков с прогнозируемыми размерами.

Вероятность поражения атакующего средства P(A) может быть представлена следующим выражением [13]:

$$P(A) = \iint G_0(y, z) \cdot f_1(y, z) \cdot f_2(y, z) dy dz, \qquad (1)$$

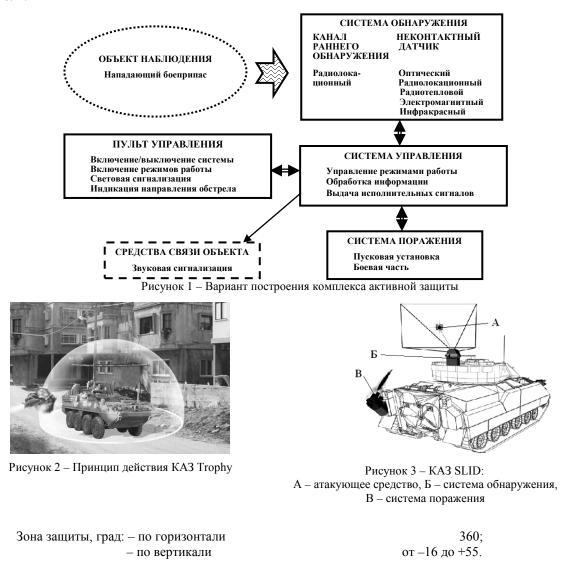
где $G_0(y,z)$ — условный координатный закон поражения; f1(y,z) — закон рассеяния / ошибок наведения противотанковых средств (ПТС) на защищаемый объект; f3(y,z) — плотность вероятности срабатывания системы обнаружения в зависимости от ошибок наведения атакующего средства/боеприпаса.

Активной защите танков посвящены работы Григоряна В.А. [14].

Системы обнаружения, управления и поражения могут быть как в раздельном исполнении, так и объединенными в различных сочетаниях в модули, количество которых зависит от компоновки КАЗ на защищаемом объекте.

Целью статьи является анализ систем обнаружения комплексов активной защиты.

Основная часть. В настоящее время метод построения комплексов активной защиты определяется их алгоритмом работы – автоматическое обнаружение приближающегося боеприпаса, слежение за ним, определение скорости и траектории полета, расчет времени реагирования, пуск средства воздействия и его инициирование (рис. 1).


Данные о наиболее отработанных и прошедших испытания в составе объектов системах обнаружения приведены ниже.

KA3 AWiSS компании DIEHL. Используется миллиметровый радиолокационный датчик. Датчики обнаруживают цель на расстоянии 75 м. Радиолокационная станция (РЛС) поиска и сопровождения (радиолокатор обнаружения и слежения) работают в KA-диапазоне.

KA3 SPATEM компании GIAT. Нахождение угрозы происходит на дистанциях свыше 50 метров. Идентификации цели на удалении до 50 м при помощи инфракрасных и электромагнитных датчиков.

КАЗ APS Iron Fist компании IMI. Радиолокатор обнаруживает потенциальную угрозу и передает данные о дистанции и траектории полета снаряда в систему управления огнём (СУО). Используется радиолокационный (РЛ) сенсор, разработанный компанией IAI-Hta и дополнительный пассивный инфракрасный (ИК) детектор, разработанный компанией Bbit/Elisra. Компания RADA Electronic Systems предлагает использовать свой радар RPS-10

КАЗ Trophy компаний Rafael и Israel Aircraft Industries. РЛС ведет поиск и обнаружение средства/средств нападения и начинает сопровождение лишь в том случае, если при проведенном расчете ожидается попадание в машину (четыре антенны, размещенные на передней и кормовой частях и бортах платформы, и обеспечивающие обзор в секторе 360). РЛС обнаружения и сопровождения целей с радиолокационными датчиками (фазированные антенные решетки) работает в миллиметровом диапазоне длин волн.

Максимальная дальность обнаружения подлетающих боеприпасов, м до 1400.

KA3 Quick Kill компания Raytheon. РЛС обнаружения и сопровождения целей миллиметрового диапазон длин волн - твердотельные, многофункциональные радиолокаторы с фазированными антенными решетками (ФАР) MFRFS (Multi-Function Radio Frequency System).

 Зона защиты, град: – по горизонтали
 360;

 – в верхней полусфере
 180.

 Максимальная дальность обнаружения подлетающих боеприпасов, м
 до 1600.

KA3 SLID на конкурсной основе конкурс компаний Raytheon и Rockwell. Обнаружение подлетающего боеприпаса осуществляется на дальности около 250 метров. Защитный снаряд системы SLID представляет собой автономный аппарат-перехватчик. Боеприпас имеет лазерную систему наведения на конечном участке. При этом:

 для обнаружения вспышки выстрела в проекте компании Raytheon используется ультрафиолетовый (УФ) датчик Система обнаружения подлетающих боеприпасов – пассивная, используются ИК датчики обнаружения. Сопровождение подлетающего снаряда осуществляется с помощью РЛС миллиметрового диапазона; обнаружение и сопровождение цели в проекте компании Rockwell осуществляется с помощью ИК датчика.

CA3 CICS. Для обнаружения атакующего боеприпаса используются пассивные датчики (CICM).

KA3 FCLAS. Обнаружение подлетающего боеприпаса осуществляется РЛС. При приближении угрожающего объекта выстреливается антиснаряд, на котором находятся РЛ датчики подрыва, работающие в миллиметровом диапазоне.

КАЗ Scudo компании Oto Melara. Для идентификации подлетающих управляемых или неуправлемых ракет используется активная РЛС непрерывного излучения Х-диапазона длин волн, в которую входят передающая и четыре приемные антенны.

КАЗ компании Bofors. Подлетающий боеприпас поражается на расстоянии до 20 м 90...100-мм снарядом с датчиком цели, способным обнаруживать цель на дальности до 10...20 м.

LEDS 150 фирмы Saab Avitronics. Комплект датчиков, выявляющих угрозу, содержит РЛС миллиметрового диапазона и тепловизионные датчики. Они объединены в блок МСТS 150 (система подтверждения типа вооружения и сопровождения). Два блока МСТS 150 обеспечивают взаимное перекрытие по азимуту 360^{0} и от (-15 до +45) 0 по вертикали.

Система дальнего радиуса действия LEDS 300 содержит блоки MCTS-300 и может обнаруживать угрозы на расстоянии 1000 м и более.

Рисунок 4 – KA3 LEDS 150

Рисунок 5 – РЛС КАЗ "Арена"

CA3 KAPS компании ADD. Дальность обнаружения и определения снарядов и противотанковых ракет – до 150 м. Работа системы основана на применении трехкоординатной радиолокации, а также термовизоров (так в источнике). Обнаружив цель, система сопровождает её.

КАЗ "Дрозд". На дальности 330 м РЛС обнаруживает атакующий противотанковый боеприпас. Если боеприпас летит в контур танка, то с дальности около 130 м РЛС переходит в режим сопровождения. Используются простейшие радиолокационные датчики миллиметрового диапазона. Фильтры датчиков обеспечивают селекцию целей, движущихся со скоростями, типичными для ПТУР.

КАЗ "Арена" и "Арена-Э", Коломенское КБ машиностроения. РЛС непрерывного действия (многофункциональная с "мгновенным" обзором пространства во всем защищаемом секторе) обнаруживает цель, движущуюся с характерной для ПТУР скоростью. После анализа полученной информации, если вероятность попадания данного ПТУР в танк высока, РЛС автоматически переводится в режим сопровождения обнаружение и сопровождение целей.

Дальность обнаружения подлетающих целей, м – 50.

Дальность до цели при выдаче команды на поражение, м – 7,8–10,06.

Если расчетная траектория ПТУР не пересекается с траекторией движения танка, то РЛС возвращается в режим обнаружения целей.

КАЗ "Заслон" ГП "БЦКРТ "Микротек". РЛС обнаружения цели, работающая в миллиметровом диапазоне, находится в самом боеприпасе и непрерывно излучает сигнал на дистанцию приблизительно 2—2.5 м.

Таким образом, наиболее эффективными в настоящее время являются системы обнаружения и сопровождения, основанные на использовании датчиков/приёмников с применением активной радиолокации в миллиметровом диапазоне электромагнитного излучения.

В радиолокационном диапазоне дальность действия системы поиска (разведки) зависит не только от чувствительности приемника системы обнаружения, но и от характеристик работающих радиолокационных средств — импульсной мощности передатчика P_{II} и коэффициента усиления передающей антенны G_{II} [15, 16].

Рисунок 6 – КАЗ "Заслон"

$$R = \frac{\lambda}{4\pi} \sqrt{\frac{P_{II}G_{II}G}{P_{II}}},$$
 (2)

где $P_{\it{\Pi}}$ – чувствительность приемника, G – коэффициент усиления приемной антенны.

Для повышения помехоустойчивости и исключения ложных срабатываний в составе системы обнаружения могут применяться каналы раннего обнаружения, работающие длительное время, и неконтактные датчики, включающиеся по сигналу указанных каналов.

Выводы. Анализ существующих на сегодняшний день систем обнаружения комплексов активной защиты позволяет сделать следующие выводы:

- 1. Датчики КАЗ / САЗ должны быть достаточно чувствительными для того, чтобы обнаружить угрозу на требуемой дальности и обеспечить время для реагирования. Наиболее вероятная и оптимальная дальность обнаружения до 30–50 м.
- 2. РЛС миллиметровых волн обеспечивают хорошее разрешение, позволяющее даже визуализировать некоторые отличительные особенности боеприпасов, однако их работа в непрерывном режиме демаскирует местоположение защищаемого объекта.
- 3. Целесообразно для получения предварительной информации о потенциальной угрозе использовать пассивные ультрафиолетовые и инфракрасные датчики, которые позволяют обнаружить пуск ПТУР или выстрел противотанковой пушки.

Литература

- 1. Ogorkiewicz R.M. Detection and Obscuration Counter Anti-Armor Weapons. Development of active protection systems for combat vehicles is slowly gathering momentum / R.M. Ogorkiewicz // Jane's International Defense Review. January 2003. P. 49–53.
- 2. Мартышин В. Комплексная защита боевых машин / Владимир Мартышин // Военный парад. 2009. №3. С. 76–77.
- 3. Российский подход к усилению броневой защищённости бронетанковой техники // Иностранная печать об экономическом, научно-техническом и военном потенциале государств-участников СНГ и технических средствах его выявления (Серия «Вооруженные силы и военно-промышленный потенциал»). − 2006. № 10. C. 17–22.
- 4. Активная защита для израильских боевых машин [Электронный ресурс] // Режим доступа на сайт: www.army-guide.com.
 - 5. Close-In Countermeasure system (CICS) // Режим доступа на сайт: www.army-guide.com.
- 6. Активная защита SLID [Электронный ресурс] // Режим доступа: http://www.boeing.com/defense-space/missiles/slid/slid.htm.
- 7. Система активной защиты фирмы Saab Avitronics [Электронный ресурс] // Режим доступа к сайту: www.army-guide.com.
- 8. Южная Корея разрабатывает систему активной защиты KAPS [Электронный ресурс] // Режим доступа к сайту : <u>www.army-guide.com</u>.
- 9. Активная защита "Арена" [Электронный ресурс] // Независимое военное обозрение. 14.07.2000. Режим доступа: Танку ПТУР не страшен! АЗ Арена.htm.
- 10. Березов А. Системы активной защиты зарубежной бронетанковой техники / А. Берёзов // Зарубежное военное обозрение. -2009. № 8. C. 39-42.
- 11. Средства активной обороны бронированных машин // Иностранная печать об экономическом, научно-техническом и военном потенциале государств-участников СНГ и технических средствах его выявления (Серия «Вооруженные силы и военно-промышленный потенциал»). 2006. № 3. С. 18–28.
- 12. Системы активной защиты бронетехники // Иностранная печать об экономическом, научнотехническом и военном потенциале государств-участников СНГ и технических средствах его выявления (Серия «Вооруженные силы и военно-промышленный потенциал»). $2008. \mathbb{N} \cdot 4. \mathbb{C}$. 22–37.
- 13. Васьковский М.И. Методика сравнительной оценки систем активной защиты боевых бронированных машин / М.И. Васьковский: Дис. ... канд. техн. наук: 20.02.14. К., 2002. 193 с.
- 14. Григорян В.А. Защита танков / В.А. Григорян, Е.Г. Юдин, И.И. Терехин и др.; Под ред. В.А. Григоряна. М.: Изд-во МГТУ им. Н.Э. Баумана, 2007. 327 с.
- 15. Системы информации об окружающей обстановке // Army Guide Monthly/ 2008. № 11 (50). С. 10–11.
 - 16. Горбунов В.А. Эффективность обнаружения целей / В.А. Горбунов. М.: Воениздат, 1980. 160 с.

minospecial menoperation and enoperation and e

Bibliography (transliterated)

- 1. Ogorkiewicz R.M. Detection and Obscuration Counter Anti-Armor Weapons. Development of active protection systems for combat vehicles is slowly gathering momentum. R.M. Ogorkiewicz. Jane's International Defense Review. January 2003. P. 49–53.
- 2. Martyishin V. Kompleksnaya zaschita boevyih mashin. Vladimir Martyishin. Voennyiy parad. 2009. #3. P. 76–77.
- 3. Rossiyskiy podhod k usileniyu bronevoy zaschischyonnosti bronetankovoy tehniki. Inostrannaya pechat ob ekonomicheskom, nauchno-tehnicheskom i voennom potentsiale gosudarstv-uchastnikov SNG i tehnicheskih sredstvah ego vyiyavleniya (Seriya «Vooruzhennyie silyi i voenno-promyishlennyiy potentsial»). 2006. # 10. P. 17–22.
- 4. Aktivnaya zaschita dlya izrailskih boevyih mashin [Elektronnyiy resurs] Rezhim dostupa na sayt: www.army-guide.com.
 - 5. Close-In Countermeasure system (CICS). Rezhim dostupa na sayt: www.army-guide.com.
- 6. Aktivnaya zaschita SLID [Elektronnyiy resurs]. Rezhim dostupa: http://www.boeing.com/defense-space/missiles/slid/slid.htm.
- 7. Sistema aktivnoy zaschityi firmyi Saab Avitronics [Elektronnyiy resurs]. Rezhim dostupa k saytu: www.army-guide.com.
- 8. Yuzhnaya Koreya razrabatyivaet sistemu aktivnoy zaschityi KAPS [Elektronnyiy resurs]. Rezhim dostupa k saytu : www.army-guide.com.
- 9. Aktivnaya zaschita "Arena" [Elektronnyiy resurs]. Nezavisimoe voennoe obozrenie. 14.07.2000. Rezhim dostupa: Tanku PTUR ne strashen! AZ Arena.htm.
- 10. Berezov A. Sistemyi aktivnoy zaschityi zarubezhnoy bronetankovoy tehniki. A. BerYozov. Zarubezhnoe voennoe obozrenie. 2009. # 8. P. 39–42.
- 11. Sredstva aktivnoy oboronyi bronirovannyih mashin. Inostrannaya pechat ob ekonomicheskom, nauchnotehnicheskom i voennom potentsiale gosudarstv-uchastnikov SNG i tehnicheskih sredstvah ego vyiyavleniya (Seriya «Vooruzhennyie silyi i voenno-promyishlennyiy potentsial»). 2006. # 3. P. 18–28.
- 12. Sistemyi aktivnoy zaschityi bronetehniki. Inostrannaya pechat ob ekonomicheskom, nauchnotehnicheskom i voennom potentsiale gosudarstv-uchastnikov SNG i tehnicheskih sredstvah ego vyiyavleniya (Seriya «Vooruzhennyie silyi i voenno-promyishlennyiy potentsial»). 2008. # 4. P. 22–37.
- 13. Vaskovskiy M.I. Metodika sravnitelnoy otsenki sistem aktivnoy zaschityi boevyih bronirovannyih mashin. M.I. Vaskovskiy: Dis. ... kand. tehn. nauk: 20.02.14. K., 2002. 193 p.
- 14. Grigoryan V.A. Zaschita tankov. V.A. Grigoryan, E.G. Yudin, I.I. Terehin i dr.; Pod red. V.A. Grigoryana. M.: Izd-vo MGTU im. N.E. Baumana, 2007. 327 p.
- 15. Sistemyi informatsii ob okruzhayuschey obstanovke. Army Guide Monthly. 2008. # 11 (50). P. 10–11
 - 16. Gorbunov V.A. Effektivnost obnaruzheniya tseley. V.A. Gorbunov. M.: Voenizdat, 1980. 160 p.

УДК 621.384.3

Глєбов В.В., Роленко С.О.

СИСТЕМИ ВИЯВЛЕННЯ КОМПЛЕКСІВ АКТИВНОГО ЗАХИСТУ

Приведені характеристики систем виявлення комплексів активного захисту, найбільш відпрацьованих та яки пройшли випробування у складі об'єктів. Виконаний аналіз існуючих на сьогоднішній день систем виявлення. Зроблено висновок про необхідність використання пасивних датчиків виявлення загрози нападу засобів поразки.

Glebov V.V., Rolenko S.A.

ACTIVE PROTECTION DETECTION SYSTEM

The presented specifications of the active protection detection systems are the most proven and tested as a part of a vehicle. Analyzed were the currently existing detection systems. The conclusion was made about the necessity of using passive sensors for detection of destruction means threat.