<u>ТРАНСПОРТНЕ</u> МАШИНОБУДУВАННЯ

УДК 629.017

Клец Д.М., канд. техн. наук

ЭКСПЕРИМЕНАЛЬНОЕ ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА СЦЕПЛЕНИЯ КОЛЕС С ДОРОГОЙ

Введение. Испытания автомобилей являются основой объективной оценки их технического уровня и качества изготовления, а также принятия соответствующих решений на всех стадиях жизненного цикла - при постановке на производство, модернизации, или для прекращения серийного выпуска. При создании новых и совершенствовании старых конструкций автомобилей, а также при ввозе подержанных автомобилей зарубежного производства актуальны вопросы квалиметрии и сертификации указанных транспортных средств.

Для проведения большинства дорожных испытаний автомобилей необходимо знать точное значение коэффициента сцепления колес с дорогой. При отсутствии экспериментальных данных коэффициент сцепления шин с дорогой выбирают в зависимости от состояния опорной поверхности, как правило, в пределах $\varphi = 0,1...0,8$. Однако это может привести к ощутимой погрешности. Таким образом, представляет интерес разработка простого и доступного метода определения коэффициента сцепления в дорожных условиях.

Анализ последних достижений и публикаций. Коэффициент сцепления является характеристикой взаимодействия колеса с дорогой. Согласно работе [11], из общего числа ДТП до 15% (а в неблагоприятные погодные условия - до 70%) приходится на долю недостаточного коэффициента сцепления.

Исследованию сцепления колеса с опорной поверхностью посвящено большое количество работ как у нас в стране, так и за рубежом [1, 4, 7-11, 13-15]. Анализ этих работ показывает, что коэффициент сцепления зависит от большого числа различных параметров и, в первую очередь от типа покрытия и состояния дороги, конструкции и материала шины, давления воздуха в ней, нагрузки на колесо, скорости движения, температурных условий, процента скольжения или буксования колеса.

В работе [1] предложены рекомендации по выбору значения коэффициента сцепления при различных состояниях дорожного покрытия, шины и скоростях движения автомобиля (см. табл. 1).

В ряде работ [4, 8] коэффициент сцепления при юзе предлагается определять по величине измеренного отрицательного ускорения (метод отрицательных ускорений)

$$\varphi = \dot{V}/g$$
 , (1)

где \dot{V} – измеренное отрицательное ускорение, g – ускорение свободного падения.

Недостатком указанного способа является то, что с его помощью можно определить лишь средние значения коэффициента сцепления на участке торможения в задан-

Транспортне машинобудування

ном интервале скоростей, т.е. выполнить точечное измерение сцепления. Достоинства метода отрицательных ускорений — простота, доступность и достаточная точность при условии соблюдения несложных требований к экспериментальным исследованиям.

С целью квалиметрии транспортных средств, в ХНАДУ, совместно с ХНТУСХ им. П. Василенко, разработан мобильный регистрационно-измерительный комплекс (М.Р.И.К.) [6], который позволяет проводить испытания на устойчивость, управляемость, плавность хода, а также аэродинамические, мощностные, тормозные и тяговоскоростные свойства мобильных машин согласно Глобальным техническим правилам ООН № 8 [3] и Государственным стандартам Украины.

 $\it Tаблица~1$ Коэффициенты сцепления для пневматических шин на различных поверхностях дороги

	Состояние шины	Состояние дорожного полотна					
Скорость движения автомо- биля, км/ч		Cyxoe	Мокрое при толщине водяной пленки около 0,2 мм	Сильный дождь, тол- щина водяной пленки около 1 мм	Лужи, тол- щина водя- ной пленки около 2 мм	Лед	
		Коэффициент сцепления					
50	Новая	0,85	0,65	0,55	0,5	0,1 и	
	Изношен- ная *	1	0,5	0,4	0,25	менее	
90	Новая	0,8	0.6	0,3	0,05		
	Изношен- ная *	0,95	0.2	0,1	0,05		
130	Новая	0,75	0,55	0,2	0		
	Изношен- ная *	0,9	0,2	0,1	0		

^{*} Высота протектора изношенной шины должна быть $\geq 1,6$ мм (минимально-допустимое значение по нормам безопасности StVZO, \S 36.2) [1]

Разработанный М.Р.И.К. состоит из двух датчиков ускорений Freescale Semiconductor модели ММА7260QT, а также ЭВМ для снятия и архивации данных. Как показывает практика, для получения в процессе испытаний с помощью М.Р.И.К. достоверных данных об эксплуатационных свойствах и техническом состоянии автомобиля, выбора табличных значений коэффициента φ недостаточно. Потому, актуальным является вопрос разработки экспериментального метода определения коэффициента φ в дорожных условиях с помощью акселерометров.

Проведенный выше анализ показал, что при отсутствии специальных приборов и лабораторий во время дорожных испытаний, целесообразно с помощью доступных датчиков ускорения определить коэффициент сцепления. По сравнению с произвольным выбором табличных значений φ , данный метод приведет к повышению точности эксперимента.

Цель и постановка задач исследования. Целью исследования является разработка методики экспериментального определения коэффициента сцепления колес с дорогой с помощью акселерометров.

Экспериментальное определение коэффициента сцепления с помощью датчиков ускорения. Для определения коэффициента сцепления в дорожных условиях предлагается использовать разработанный автором совместно с сотрудниками кафедры ТМ и РМ ХНАДУ, а также кафедры «Автомобили и тракторы» ХНТУСХ им. П. Василенко М.Р.И.К. [6] на основе двух трехосевых акселерометров ММА7260QT. Перед проведением испытаний необходимо отключить антиблокировочную систему (если автомобиль ею оснащен). В процессе испытаний необходимо соблюдать следующие рекомендации [8]:

- 1. Автомобильные шины могут в значительной степени влиять на замеры величин сцепления. В этой связи износ рисунка протектора каждой из них не должен превышать 50%, а давление в них должно всегда поддерживаться на уровне, соответствующем спецификациям изготовителей.
- 2. Автомобильные тормоза должны быть всегда надлежащим образом отрегулированы для обеспечения сбалансированного торможения. Все транспортные средства должны иметь минимальную тенденцию к изменению углового положения продольной оси корпуса наряду с удовлетворительной путевой устойчивостью при торможении.
- 3. Деселерометр (акселерометр) должен устанавливаться на транспортном средстве в соответствии с инструкциями изготовителя. Он должен быть смонтирован в таком месте внутри транспортного средства, чтобы его корпус не смещался в какую-либо сторону при движении. Техническое обслуживание и калибровка деселерометра должны производиться в соответствии с рекомендациями изготовителя.
- 4. Для получения обоснованной оценки состояния дорожной поверхности необходимо снять определенное число показаний. В каждой зоне должны быть проведены как минимум три проверки на скорости 35 км/ч. Для каждой зоны должно быть определено среднее число.
- 5. Торможение следует производить достаточно энергично, чтобы заблокировать все четыре колеса транспортного средства, а затем следует немедленно отпустить тормоза. Время, в течение которого колеса находятся в заблокированном состоянии, не должно превышать 1 с. Применяемый деселерометр должен зарегистрировать или удержать показание максимального замедления, имевшего место в ходе проверки.

После проведения испытаний определяются значения коэффициента φ с использованием зависимости (1). Учет зависимости коэффициента сцепления колес с дорогой от скорости движения автомобиля позволяет достичь максимально возможной точности полученного результата.

Приведем несколько примеров экспериментального определения замедлений автомобиля, которые соответствуют приведенным выше рекомендациям и определим для них значения коэффициента φ . В работе [12] для дорожных испытаний использовался переднеприводный легковой автомобиль «Опель — Аскона 1.6 S» в стандартном исполнении без ABS, ESP, SBC. Тормозная система двухконтурная, гидравлическая. Спереди установлены дисковые, а сзади — барабанные тормоза. Стояночный тормоз с тросовым приводом и действует на задние колёса. На рис. 1 приведен внешний вид испытуемого автомобиля, а также состояние дорожного покрытия.

Результаты экспериментальной оценки тормозных свойств исследуемого автомобиля, а также величины коэффициента сцепления колес с дорогой, определенные по зависимости (1) приведены в таблице 2.

На рис. 2 приведена зависимость коэффициента сцепления от скорости автомобиля «Опель – Аскона 1.6 S», построенная по данным табл. 2. Анализ указанного графика показывает, что экспериментальные значения хорошо вписываются в «коридор», полученный из кривых φ_{max} и φ_{min} . Среднее значение коэффициента сцепления составило 0,7.

Транспортне машинобудування

Рис. 1. Испытуемый автомобиль «Опель – Аскона 1.6 S» [12]

Таблица 2 Результаты экспериментальной оценки тормозных свойств автомобиля

№ заезда	V _{0,} км/ч [12]	$\dot{V}_{ycm,} \\ \text{m/c}^2 [12]$	$arphi_{ m _{9KCN}}= \ = \dot{V}_{ycm} / g$	φ _{max} [15]	φ _{min} [15]
1	61,50	6,80	0,69	0,77	0,45
2	70,50	7,30	0,74	0,76	0,42
3	71,00	6,40	0,65	0,76	0,42
4	79,50	6,80	0,69	0,75	0,39
5	80,00	6,90	0,70	0,75	0,39

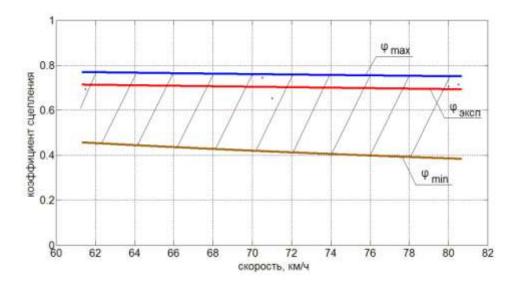


Рис. 2. Зависимость коэффициента сцепления от скорости автомобиля «Опель – Аскона 1.6 S»: φ_{max} и φ_{min} – максимальные и минимальные значения для сухого асфальтобетона в зависимости от скорости [15]; $\varphi_{{}^{9}\!\kappa\!\kappa\!c}$ – экспериментальные значения, полученные с помощью М.Р.И.К. и зависимости (1)

В табл. 3 приведены результаты измерений эффективности торможения автомобиля ВАЗ-2110 с различными моделями колодок и температурными режимами [5]. Дорожное полотно в хорошем состоянии, сухое (см. рис. 3a). С использованием зависимости (1) определены значения коэффициента φ при испытаниях «холодных», «горячих» и остывших тормозов, которые приведены на рис. 3δ - 3ϵ .

Результаты измерений эффективности торможения [5]

Модель	Тормоз-ной	Установившееся за-	Среднее усилие на	Максимальное усилие на				
колодок	путь,м	медление, m/c^2	педали тормоза, кгс	педали тормоза, кгс				
Этап 1. Испытания «холодных» тормозов (тип «0»),								
Торможение со 100 км/ч, температура колодок < 100°C								
ТИИР	ИР 47 8,1 24.3 32.0			32.0				
DAfmi	44,1	8,7	30,8	46,2				
EBC	42,7	9,0	41,7	56,2				
Ferodo	41,9	9,2	42,4	50,2				
Этап 2. Испытания «горячих» тормозов (тип «1»). Торможение со 100 км/ч, температура коло-								
	док — 480—540°C							
ТИИР	53.4	7.2 54.3		317				
DAfmi	51,0	7,6	31,2	55,8				
EBC	51,5	7,5	51,7	90,0				
Ferodo	47,4	8,2	46,2	57,4				
Этап 3. Испытания остывших тормозов (тип «0»), Торможение со 100 км/ч, температура коло-								
док — 100°C								
ТИИР	46,6	8.3	37.2	53.9				
DAfmi	43,4	8,9	28,2	38,2				
EBC	42,4	9,1	34,1	46,5				
Ferodo	41,7	9,3	30,7	39,8				

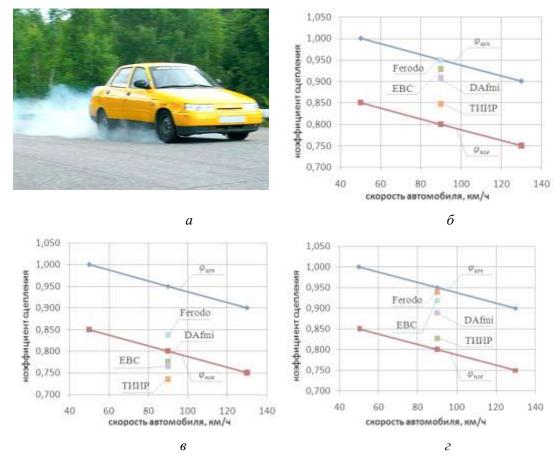


Рис. 3. Результаты тормозных испытаний автомобиля ВАЗ-2110: a — внешний вид испытуемого автомобиля [5]; δ — коэффициент φ , определенный при испытаниях «холодных» тормозов; ε — коэффициент φ при испытаниях «горячих» тормозов; ε — коэффициент φ при испытаниях остывших тормозов; φ_{ush} и φ_{nos} — значения для изношенных и новых шин [1]

Транспортне машинобудування

Анализ графиков, приведенных на рис. 3 показывает, что значения коэффициентасцепления, определенные при холодных и остывших тормозных колодках различных производителей, отличаются не более чем на 2,4%. При испытаниях горячих тормозов замедление снижается, что приводит к погрешности определения φ до 16% по сравнению с холодными, в меньшую сторону.

Таким образом, при оценке коэффициента сцепления следует избегать значительного нагрева тормозных колодок, поскольку их эффективность снижается и возникает погрешность измерения искомого коэффициента. Также рекомендуется для достижения точного результата использовать качественные тормозные колодки, т.к. дешевые колодки не полностью реализуют потенциал тормозной системы автомобиля и возможное сцепление колеса с дорогой.

На кафедре автомобилей ХНАДУ проводилась оценка тормозных свойств автомобиля BMW-520i. Результаты испытаний приведены в работе [14]. Испытуемый автомобиль 2002 года выпуска, в снаряженном состоянии на сухом, ровном асфальтобетонном покрытии достигал замедления 7.8 m/c^2 (см. табл. 4).

Результаты испытаний автомобиля BMW-520i [14]

Таблица 4

1 csymbiatis nemsitanini astomooniii Bivi vi 3201 [14]						
Номер испытания	1	2	3	4	Средн. значен.	
Установившееся замедление, м/c ²	7,88	7,88	7,75	7,69	7,8	

Выполненный расчет по зависимости (1) позволил определить коэффициент сцепления, значения которого находилось в пределах 0,785-0,804.

На демонстрационно-испытательном полигоне XK «АвтоКрАЗ» автором совместно со специалистами из XHAДУ, XHTУСХ им. П. Василенко и XУВС им. И. Кожедуба проведены тормозные испытания автомобиля KpA3-5322BE (см. рис. 4). Полученные данные позволили определить коэффициент сцепления колес с дорогой в момент испытаний, который составил 0,65.

Рис. 4. Общий вид автомобиля КрА3-5322ВЕ и установка на него измерительной аппаратуры

На примере автомобиля «Москвич-412» выполнено определение коэффициента сцепления с использованием М.Р.И.К. ХНАДУ. Общий вид автомобиля с установленной аппаратурой приведен на рис. 5, а развиваемые ускорения — на рис. 6.

С использованием зависимости (1), определен коэффициент сцепления колес с дорогой, среднее значение которого составило 0,62.

Рис. 5. Испытуемый автомобиль «Москвич-412» и установка на него измерительной аппаратуры

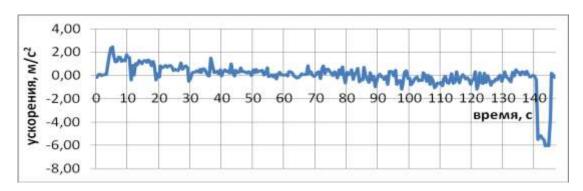


Рис. 6. Ускорения, развиваемые испытуемым автомобилем

C использованием зависимости (1), определен коэффициент сцепления колес с дорогой, среднее значение которого составило 0,62.

Таким образом, применение метода отрицательных ускорений совместно с М.Р.И.К. позволяет определять коэффициент сцепления колес с дорогой испытуемого автомобиля и повысить точность испытаний на устойчивость, управляемость, а также тормозные и тягово-скоростные свойства мобильных машин при отсутствии специальных приборов и лабораторий.

Выводы.

- 1. Применение метода отрицательных ускорений совместно с мобильным регистрационно-измерительным комплексом ХНАДУ на базе акселерометров ММА7260QТ позволяет определить коэффициент сцепления колес с дорогой автомобиля и повысить точность испытаний на устойчивость, управляемость, а также тормозные и тяговоскоростные свойства мобильных машин при отсутствии специальных приборов и лабораторий.
- 2. При экспериментальном определении коэффициента сцепления следует избегать значительного нагрева тормозных колодок, поскольку их эффективность снижается и возникает погрешность измерения искомого коэффициента. Значения коэффициента сцепления, определенные при температуре 100 и 540°С могут отличатся на 16%. При холодных тормозных колодках и температуре их 100°С результат отличается не более, чем на 2,4%.
- 3. Для определения корректных значений коэффициента сцепления колес с дорогой износ рисунка протектора шин испытуемого автомобиля не должен превышать 50%. Давление в шинах должно поддерживаться на уровне, соответствующем рекомен-

дациям изготовителей. Антиблокировочная система автомобиля (при ее наличии) должна быть отключена.

4. Учет зависимости коэффициента сцепления колес с дорогой от скорости движения автомобиля позволяет достичь максимально возможной точности полученного результата.

Литература: 1. Автомобильный справочник Bosch / [пер. с англ. Г.С. Дугин]. – Москва: За рулем, 1999. – 895 с. – (Первое издание на русском языке). 2. BA3 2108 «Аэро» : («Семь Вёрст») [Электронный ресурс] // Автомобильная интернет-газета — Режим доступа к журн. : http://7verst.ru/old/vaz_mdls/2108air/2108air.htm. 3. Глобальные технические правила ООН № 8 «Электронные системы контроля устойчивости» : 26 июня 2008 г. / GE.08-24699. — Офиц. изд. – Женева : OOH, 2008. – 116 с. 4. Кнороз В. И. Работа автомобильной шины / В. И. Кнороз. – *М.: Транспорт, 1976. – 237 с. 5. Остановись, мгновенно! [Электронный ресурс] / В. Арутин,* И. Шадричев, А. Мохов // Автоспорт — 2004. — № 09 (57) — Режим доступа к журн. : http://www.auto-sport.ru/archive/2004/09/tormoz/. 6. Пат. 51031 Україна, МПК G01P 3/00 25.06.2010. Система для визначення параметрів руху автотранспортних засобів при динамічних (кваліметричних) випробуваннях / Подригало М. А., Коробко А.И., Клец Д. М., Файст В.Л.; заявник та патентовласник Харківський нац. автом.-дорожн. університет. - № и 2010 01136; заявл. 04.02.10; опубл. 25.06.10, Бюл. № 12. 7. Правила диагностики и оценки состояния автомобильных дорог. BCH 6-90 / Минавтодор РСФСР. - М.: ЦБНТИ Минавтодора РСФСР, 1990. – 168 с. 8. Распоряжение Федерального дорожного агентства от 12 января 2011 г. N 13-р «Об издании и применении ОДМ 218.4.005-2010 «Рекомендации по обеспечению безопасности движения на автомобильных дорогах»» – Офиц. изд. – М.: Росавтодор, 2011. – 137 с. – (Нормативный документ Федерального дорожного агентства). 9. Розанов В. Г. Торможение автомобиля и автопоезда / \hat{B} . Γ . Розанов. – M., Машиностроение, 1964. – 244 с. 10. Руководство по аэропортовым службам. Часть 2. Состояние поверхности покрытия: Дос 9137-АЛ/898. – Издание четвёртое – ICAO, 2002. – IV, 126 с. – (Нормативный документ Международной оргагражданской авиаиии. Руководство). 11. Сильянов B. B.Транспортноэксплуатационные качества автомобильных дорог и городских улиц: учебник [для студ. высш. учеб. завед.] / В. В. Сильянов, Э. Р. Домке. – 2-е изд. – М.: Издательский центр «Академия», 2008. – 352 с. 12. Степанов В. Ю. Зниження нерівномірності гальмівних моментів на колесах легкового автомобіля : автореф. дис. на здобуття наук. ступеня канд. техн. наук : спец. 05.22.02 «Автомобілі та трактори» / В. Ю. Степанов. – Харків, 2006. – 20 с. 13. Туревский И. С. Теория автомобиля / И. С. Туревский. — М.: «Высшая школа», 2005. – 240 с. 14. Туренко А. Н. Исследование тормозной динамики автомобиля при анализе дорожнотранспортного происшествия / А. Н. Туренко, В. И. Клименко, А. В. Сараев, А. О. Малявин // Автомобильный транспорт. – 2010. Вып. 26 – С. 17-22. 15. Фалькевич Б. С. Теория автомобиля /Б. С. Фалькевич. – М.: *Машгиз*, 1963. – 236 с.

Bibliography (transliterated): 1. Avtomobil'nyj spravochnik Bosch / [per. s angl. G.S. Dugin].- Moskva: Za rulem, 1999. - 895 s. - (Pervoe izdanie na russkom jazyke). 2. VAZ 2108 «Ajero» : («Sem' Vjorst») [Jelektronnyj resurs] // Avtomobil'naja internet-gazeta – Rezhim dostupa k zhurn. : http://7verst.ru/old/vaz mdls/2108air/2108air.htm. 3. Global'nye tehnicheskie pravila OON № 8 «Jelektronnye sistemy kontrolja ustojchivosti» : 26 ijunja 2008 g. / GE.08-24699. – Ofic. izd. – Zheneva : OON, 2008. – 116 s. 4. Knoroz V. I. Rabota avtomobil'noj shiny / V. I. Knoroz. – M.: Transport, 1976. -237 s. 5. Ostanovis', mgnovenno! [Jelektronnyj resurs] / V. Arutin, I. Shadrichev, A. Mohov // Avtos-- № 09 (57) – Rezhim dostupa k zhurn. : http://www.autosport.ru/archive/2004/09/tormoz/. 6. Pat. 51031 Ukraïna, MPK G01P 3/00 25.06.2010. Sis-tema dlja viznachennja parametriv ruhu avtotransportnih zasobiv pri dinamichnih (kvali-metrichnih) viprobuvannjah / Podrigalo M. A., Korobko A.I., Klec D. M., Fajst V.L.; zajavnik ta patentovlasnik Harkivs'kij nac. avtom.-dorozhn. universitet. - № u 2010 01136; zajavl. 04.02.10 ; opubl. 25.06.10, Bjul. № 12. 7. Pravila diagnostiki i ocenki sostojanija avtomobil'nyh dorog. VSN 6-90 / Minavtodor RSFSR. - M.: CBNTI Min-avtodora RSFSR, 1990. – 168 s. 8. Rasporjazhenie Federal'nogo dorozhnogo agentstva ot 12 janvarja 2011 g. N 13-r «Ob izdanii i primenenii ODM 218.4.005-2010 «Rekomenda-cii po obespecheniju bezopasnosti dvizhenija na avtomobil'nyh dorogah»» – Ofic. izd. – M.: Rosavtodor, 2011. – 137 s. – (Normativnyj dokument Federal'nogo dorozhnogo agentstva). 9. Rozanov V. G. Tormozhenie avtomobilja i avtopoezda / V. G. Rozanov. – M., Mashinostroenie, 1964. – 244 s. 10. Rukovodstvo po Механіка та машинобудування, 2012, № 1 64

<u>Транспортне машинобудування</u>

ajeroportovym sluzhbam. Chast' 2. Sostojanie poverhnosti pokrytija: Doc 9137-AN/898. – Izdanie chetvjortoe – ICAO, 2002. – IV, 126 c. – (Normativnyj dokument Mezhdunarodnoj organizacii grazhdanskoj aviacii. Rukovodstvo). 11. Sil'janov V. V. Transportno-jekspluatacionnye kachestva avtomobil'nyh dorog i gorodskih ulic: uchebnik [dlja stud. vyssh. ucheb. zaved.] / V. V. Sil'janov, Je R. Domke. – 2-e izd. – M.: Izdatel'skij centr «Akademija», 2008. – 352 s. 12. Stepanov V. Ju. Znizhennja nerivnomirnosti gal'mivnih momentiv na kolesah legkovogo avtomobilja: avtoref. dis. na zdobuttja nauk. stupenja kand. tehn. nauk: spec. 05.22.02 «Avtomobili ta traktori» / V. Ju. Stepanov. – Harkiv, 2006. – 20 s. 13. Turevskij I. S. Teorija avtomobilja / I. S. Turevskij. — M.: «Vysshaja shkola», 2005. – 240 s. 14. Turenko A. N. Issledovanie tormoznoj dinamiki avtomobilja pri analize dorozhno-transportnogo proisshestvija / A. N. Turenko, V. I. Klimenko, A. V. Saraev, A. O. Maljavin // Avtomobil'nyj transport. – 2010. Vyp. 26 – S. 17-22. 15. Fal'kevich B. S. Teorija avtomobilja / B S. Fal'kevich. – M.: Mashgiz, 1963. – 236 s.

Клец Д.М.

ЕКСПЕРИМЕНТАЛЬНЕ ВИЗНАЧЕННЯ КОЕФІЦІЄНТА ЗЧЕПЛЕННЯ КОЛІС З ДОРОГОЮ

Запропоновано методику експериментального визначення коефіцієнта зчеплення коліс з дорогою з використанням мобільного реєстраційно-вимірювального комплексу на базі датчиків лінійного прискорення.

Клец Д.М.

ЭКСПЕРИМЕНАЛЬНОЕ ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА СЦЕПЛЕНИЯ КОЛЕС С ДОРОГОЙ

Предложена методика экспериментального определения коэффициента сцепления колес с дорогой с использованием мобильного регистрационно-измерительного комплекса на базе датчиков линейного ускорения.

Klets D.M.

EXPERIMENTAL DETERMINATION OF TRACTION COEFFICIENT

The method of experimental determination of traction coefficient with mobile registration and measurement complex based on the linear acceleration sensors is offered.

УДК 629.017

Подригало М.А., д-р техн. наук; Полянский А.С., д-р техн. наук; Клец Д.М., канд. техн. наук; Дубинин Е.А., канд. техн. наук; Задорожняя В.В.

ОЦЕНКА УСТОЙЧИВОСТИ ПРОТИВ ОПРОКИДЫВАНИЯ КОЛЕСНОЙ МАШИНЫ С УЧЕТОМ ВЛИЯНИЯ ПОДРЕССОРЕННЫХ МАСС

Введение. Известно, что поперечная устойчивость большегрузных автомобилей и колесных тракторов значительно меньше, чем поперечная устойчивость других дорожных транспортных средств и в значительной степени зависит от габаритных размеров и веса.

Устойчивость колесных машин против опрокидывания является важным фактором, влияющим на безопасность движения. При оценке устойчивости против опрокидывания критерием является предельный угол устойчивости положения в продольной и поперечной плоскостях. При определении указанных углов принимается допущение об отсутствии подвесок колес.