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CALCULATION OF THE REAL PERFORMANCE CURVE
OF RADIAL FLOW FAN IMPELLER

Tonoena mema yiei cmammi nonseac 6 mMomy, wod ygecmu 4uciosi npoyeoypu, oouucIumu
peanvry Kpugy pobomu YuIHOPUUHO2O NIAHKOG020 Kodeca paodianvHo2o nomoky. Ocobaugocmi
NOMOKY, WO HANEICUMb PIZHUM NYHKIMAM 0006'SI3KY WAHYS8ATbHUKA MAKOJIC, OV GUSHAYEH] YUCTIOB0I0
npoyedypoio. V ybomy obuucienni egpekmu ae3a max camo sk egpexmu piokoeo mepmsi i 3a6UXpeHHs!
oynu epaxosani oxkpemo. Eghexmu neza 6yau npedcmagneni 2iOpoouHaAMiyuno 0OMedHceHoio o6nacmio
cunu. PpuxyiiHuti epekm piOuHU i 3A6UXPEHHSI NOMOKY OYIU GIOOUMI AHANOIYHO MIJC NOMOKOM y
NPAMOKYMHOMY KAHAMI 1l NOMOKOM Y NIAAHKOGOMY Mmicyi pobouoeo koneca. Obuucieno po3nooinu
BIOHOCHOI WBUOKOCMI, MUCKU Tl smpamu eHep2ii. Busnauarouu empamy enepeii, wjo Hanexicums pisHuUM
Hopmam 06c¢s2y, npubniu3Ha peanbHa Kpuea poboniu pobouo2o Koieca Modice maKkodic 6ymu eU3HAYUeHda,
Hanesxcauy pisHoi OpymanbHOCmi 6HYMPIUHIX HO8EPXOHb poOOY020 Koalecd.

I'nagnas yenv 5moii cmamvu cOCMoun 6 Mom, YmoobL 66eCHU YUCTOBbIE NPOYEOYPbl, BLIYUCTUNb
DeanvHylo Kpusyro pabomul YUIUHOPUYECKO20 NIAHOYHO20 paboyezo Koieca paodudnbHO20 NOMOKA.
Ocobennocmu nomoxa, nNpUHAONENCAue20 pasiuidHolM HYHKMAmM 00A3aHHOCMU NOKIOHHUKA MAKJICe,
bvLIU onpedenenbl YUCLOGOU Npoyedypou. B omom evluucienuu d¢ppexmuvl nezsus max owce Kax
apghexmul  JHCUOKO20 Mpenuss U 3aeUXPeHUsT ObLIU YumeHbl OmoenvbHo. Dpgexmor ne36usi OvLiu
npeocmagienvl  2UOPOOUHAMUYECKU — OSPAHUYEHHOU  06nacmvlo  cuivl.  Dpuryuonuvlii  dpghexm
JACUOKOCU U 3a6UXPeHUe NOMOKA bl OMPAdICEHbl AHATOUYHO MeICOY NOMOKOM 6 NPAMOY20NbHOM
Kanaze u nomoKoM 6 NiaHOYHOM Mecme paboyezo Korecd. Boluucnensl pacnpedenenus OmHocumenbHoll
ckopocmu, dagrenus u nomepu sxepeu. Onpedenss nomepio SHepeuU, NPUHAONENHCAWYIO PAZTULHBIM
HOpMam obvema, npubIUSUMENbHAS PedlibHas KpUsasi pabomul pabouezo Koieca Moxcem maxice Obimo
onpeoenena, NPUHAONEHCA PA3TUYHOU 2pYOOCIU BHYMPEHHUX No8epXHOCmell pabouezo Koieca.

The main aim of this paper is to introduce numerical procedures to calculate the real
performance curve of a cylindrically bladed radial-flow fan-impeller. The characteristics of the flow
belonging to different duty points of the fan also were determined by the numerical procedure. In this
calculation, the blade effects as well as the effects of the fluid friction and the turbulence were taken into
consideration separately. The effects of the blade were represented hydro-dynamically by a constrain
force field. The frictional effect of the fluid and the turbulence of the flow were reflected by the analogy
between the flow in a rectangular channel and the flow in the bladed space of the impeller. Distributions
of the relative velocity, pressure and energy loss are calculated. By determining the energy loss
belonging to different volume rates an approximate real performance curve of the impeller can also be
determined belonging to different roughness of the inner surfaces of the impeller.[2].

1. Introduction

The first main step of the calculation is to determine the change of the
moment of momentum of the absolute non-viscous flow needed to determine the
constrain force field. Next to them it is also possible to calculate the volume rate
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Q, at the optimal state of the fan impeller and the theoretical performance curve of

the impeller. The second main step of the numerical procedure is to solve the
system of the ordinary differential equation system based on the governing
equations (equations of continuity, motion and energy) of the viscous relative flow
on the main stream surface (F) of the fan impeller (Fig.1.). Applying the calculating
results given by this way all the important characteristics of the flow can be
determined. By using the calculated specific energy loss arisen in the impeller and
theoretical performance curves of the impeller, the approximate real performance
curves of the impeller can also be determined by subtracting from each other.

2. Theoretical Investigation

We have prepared only the short summary of the numerical method here. The
additional and detailed information about the total numerical procedure can be
found in [1, 2]. The applied numerical method is really an extension of the hydro-
dynamical cascade theory for incompressible and non-viscous fluid flow. The basic
equations of the calculation method are formulated in cylindrical co-ordinate
system rotated together with the fan-impeller, where the co-ordinates in cyclical
orderare r, ¢, z.
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Figure 1 — Drawing and velocity triangles of the radial flow
fan-impeller with backward curved blades
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The Fig.1. — on left-hand side — shows the meridional cross-section of the fan-
impeller, on right-hand side the shape of the blades viewed from the direction of
the rotational axis of the impeller the directions of the co-ordinates and the vectors
of the absolute velocity c, the relative velocity w , the peripheral velocity u and
the specific constrain force f at an arbitrary point of the blade surface. In the
middle of Fig.1. the velocity triangles can be seen at inlet-, outlet- and any arbitrary
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sections of the impeller. The blade angle B which can be measured between the

tangents of the co-ordinate line r =constant and blade surface at the same point is
also shown in Fig.1. The blade angle A uniquely determines the normal unit vector

n of the blade surface.

2.1. The field of constrain forces in the bladed space of the impeller

The first step of the numerical procedure is to determine the components of
the constrain force f needed to calculate the main characteristics of the viscous
flow in the blade channel of the impeller.

Let us summarise the significant assumptions applied in determining the field
of specific constrain force f :

e The specific constrain force f - similarly to every mechanical constrain
forces - expresses a friction-proof effect, in this way the specific constrain
force f is parallel to the normal unit vector n of the blade surface.

e The frictional force is parallel to the wall near to it, so the specific constrain
force and the friction force are perpendicular to each other.

e Since it is supposed that in the determination of the constrain force the fluid
is non-viscous, so the specific constrain force and the relative velocity
vectors are perpendicular to each other.

e The mean surface (F) of the meridional channel is a stream surface of the
relative flow consequently the component w, of relative velocity is equal to

zero. At the same time, along this stream surface, the stress vector and the
relative velocity vector are parallel to each other.
The equation of the motion relating to the absolute non-viscous steady fluid
flow is as follows [1,2]:

2 2
I’OtCXW:f—V(£+W7—u?j. 1)
P

Multiplying Equ. (1) by the co-ordinate unit vector e,, we can get the

relationship to determine the component f, of the constrain force :

r

Az
f,=w, rotc =—F—rc
Fooror

. -
The peripheral component f, of the constrain force is uniquely determined by

the meridional velocity w, and the change of the moment of momentum rc, in

the absolute frictionless fluid flow which can be also expressed by a specific
circulation y :
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The meridional velocity component w, and the specific circulation y depend
on the state of the operation and so consequently the constrain force also depends
on the operating conditions of the fan. By using the conditions for the specific

constrain forces f mentioned above we come to the expression between the two
components of the specific constrain force as follows :

n
fr:fwn—f:fq,ctgﬁ. 3)
P

It is easy to realize that the radial component f, of the constrain force can be

determined by the geometrical data of the blades from Equ. (3) if the peripheral
component f, of the constrain force is known. The component f, of the constrain

force can be determined very simply way by the solution of inverse problem of
hydro-dynamical cascade theory [1,2]. The constrain force field can be determined
by the change of the moment of momentum in the absolute non-viscous fluid flow
[1, 2]. To do this the determination of the specific vortex distribution » is

necessary to determine by the solution of the inverse task of the hydro-dynamical
cascade theory.

2.2. Governing equations of the numerical procedure
For the relative viscous fluid flow in the bladed space of the impeller the
equation of continuity is

div. uw =0. 4
The equation of motion in relative system can be written as follows :
p u®) 1 _
w-V w+2oxw=f-V| ——— |+=Divo. (5)
P 2) 0
The form of the equation of energy for the relative flow is
2 2
w-V B+W——u— =ﬂ'DiVO' . (6)
e 2 2) p
Let us introduce the following notations for the slope of the relative velocity
w
t=—2, @)
w

for the relative pressure potential
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p=P U ®)
P

and for the specific relative energy
2 2
E-P. WT - ”? . 9)
P

the slope of the relative velocity. Considering the relations t=w,/w, =7, /7,

and 7 = ,frfz + rf,z between the components of the shear stress, the energy equation

can be written down as:

PE 1+t o7

or p o7

The energy equation is directly available to determine the distribution of the

shear stress 7 in the relative flow. Similarly to the turbulent flow in the circular
pipe we suppose the satisfaction of the next conditions for the turbulent flow in the
rectangular channel bounded by the two neighbouring blades, the front plate and
the back shroud of the impeller:

e The specific energy loss e; caused by the viscosity of the fluid and the
turbulence of the flow concerning to length A L of the rectangular channel
can be calculated by following well-know expression as:

A g :iA—LW—Z:—A E,
D, 2
where D, is the hydraulic diameter of the blade channel is expressed in the
following form:

[Zﬁr_ d j
D. -4 N sing oy M

H - Nb ’
2[b+m_dJ /J+7

2xr
W is the average relative velocity referring to the cross-section of the blade
channel.

e In this case the shear velocity w™ can also be interpreted. It is supposed that

connection between the shear velocity w”, the average relative velocity W
and the dimensionless friction coefficient A4 is similar to that of the circular
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pipe: 1=8 w'/W * . The value of the friction coefficient A varies along

the blade channel.

Applying the conditions mentioned above in the energy equation we get a
common differential equation for the shear stress. The shear stress z can be also
expressed by Karman’s and Prandtl’s formula where we applied an second order
function to approximate the distribution of the mixing length [1,2]. By the solution
of the given differential equation the distribution of the average relative velocity W
can be determined. Similarly to the flow in circular pipe we can develop the
expressions for calculation of the dimensionless friction factor 4 in the cases when
the inner walls of the impeller wetted by the fluid are hydraulically smooth or
rough. The value of the friction coefficient A varies along the blade channel.
Knowing the distribution of W - by using the analogy to the flow in a pipe - it is
possible to determine an expression for calculation the value of the dimensionless
friction factor A if the inner walls of the impeller wetted by the fluid are
hydraulically smooth walls as follows :

L 1199 |2 |in RevZ +In b}—kﬁBGl D 5230
Ji Dy Dy Dy

where Re is the Reynolds number relating to the hydraulic diameter D,, of the
cross-section of the blade channel which will have the form :
N D
Re="2n
|4
When the inner walls of the impeller wetted by the fluid are considered
hydraulically rough walls — similarly to the formula developed by Colebrook — can
be used to calculate the value of A4 [1,2]. In this cases of course the values of
friction factor A is depend on the roughness k of inner wetted walls
of the impeller.
Omitting the details the energy equation is available to determine the
derivative of the specific frictional energy loss with respect to radius r:
’ ~ 2
des _ AW e (10)
dr D, 2
By rearranging the two component equations of the motion yields :
dP W2 ldu W 2ut ] AW

—F=f tan' f+—— -+ —| W+ -
dar 7 p 1+t* g dr r( J1+t2 ) 2Dy 1412

(11)
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dt 1+t tdu 2u At
— = el el R LN [P 12
dar  W* 7 pdr Wr D, 2 (12)

where W is the average relative velocity, u is the peripheral velocity,

f -7 W is the peripheral component of the constrain force, g is the

’ _2_7”xf1+t2

blade angle and x is a factor to express the narrowing effect of the peripheral

thickness of the blade.

The Egs. (10)-(12) form a system of ordinary differential equations which can
be solved by Runge-Kutta method on the main stream surface of the impeller by
knowing the distribution of specific vortex y before. The solution given by this

way serves the slope of the average relative velocity t r , the distribution of the
pressure p r and the specific energy loss e; r with respect to r. Next to them
by knowing the distribution of the average relative velocity w(r) and the slope of
the average relative velocity t r the radial and peripheral components of W also
can be calculated as:

w, = W_ and w, =tw, .

J1+t?

The average relative velocity W can be obtained by solving the equation of

the continuity. The connection between the average relative velocity W and its
components can be written as Equ.(7) :

W= W7+ W2 =W, 1+t (13)
Equ. (4) of the continuity and Equ. (13) are available to get an expression to
calculate the value of W as follows :

W it (14)

27rbu

where :
Q is the volume rate of the flow,

d
? is the factor considered the effect of the blade thickness,  (15)
zr

N
H=275

N is the blade number of the impeller,
d,, is the blade thickness in the direction of the co-ordinate ¢ .



The frictional energy loss from the inlet to the outlet of the impeller is
A ps

e, I, =——= determined by solution of Egs. (10-12). In this way the pressure
ol
losses from the inlet to the outlet of the impeller
Aps Q. =pe; Qr, (16)

can be calculated.

After that it is possible to calculate the volume rate Q, at the optimal state of
the fan impeller and also the theoretical performance, so called “the theoretical total
pressure difference — volume rate” curve of the fan impeller can be determined
[1,2]. In that cases when the volume rate is not equal to the optimal volume rate Q,
of flow at shockless upstream the additional energy loss should be added to the
previous one. The energy loss arises from the unsmooth upstream to the blades can
be calculated as [2]:

6 @ =2P g =o.192(ﬂ] Q-Q,° (17)
p Q

0o

By using the values of the energy losses belonging to different volume rates
and pre-wirl the real performance curves of the impeller can be determined [3, 4].

3. Application of the calculation procedure
Computerised solution as a numerical application of the calculation procedure
introduced above is illustrated for a radial flow fan impeller which blades formed
by straight cylindrical vane with constant thickness (see Fig.2.).
The initial data of the investigated fan impeller were the following :
e the diameters of the fan impeller at inlet was D, =2r; = 0.14 m and at

outlet was D, =2r, =0.3 m.

e the width of the meridian channel was constant b = 0.023 m, the thickness
of the blades was also constant d =0.003 m,
e the number of the blades was N =17, the rotation speed of the impeller was
n =3000 rpm.
e the density of the air was p =1.2 kg/m®, the kinetic viscosity of the air was
v=1.0 10° m?s.
in our numerical applications. Computer code of the numerical procedure was

developed by applying FORTRAN programming language to solve the flow
problem numerically introduced above. This computer code was used to analyse
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and determine several characteristics the turbulent flow in the bladed space of the
radial-flow fan impeller given by the initial data introduced above.

The Fig.3. shows the theoretical Ap, Q and real Ap Q total pressure

difference-volume rate curves of the fan impeller FAN-300/140-17. On the right hand
side of Fig.3. the data of the operating points of the fan impeller are printed belonging
to different states of the flow in the fan impeller: first for non-viscous fluid and later
than for viscous fluids with different roughness of the inner walls of the fan impeller.
The first column of the table contains the values of optimal volume rates Q,, in the

second column the values of the total pressure difference Ap Q, are printed and in

the third column the values of roughness k can be seen.

The operating point number 1 in Fig.3. is belonging to the theoretical case, when it
is supposed that the fluid is non-viscous and the characteristic cure is a straight line. The
operating point number 2 is belonging to hydraulically smooth surfaces of the impeller.
The operating points humbers 2-6 are belonging to hydraulically rough surfaces of the
impeller with different roughness k . These characteristic curves for the fan impeller can

be determined by subtracting of the theoretical characteristic curve Ap, Q and

pressure losses A p, Q,r, and Ap, Q calculated by Egs. (16-17).
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Figure 2 — Drawing of the radial flow fan-impeller with straight cylindrical
blades viewing from rotational axes
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Characteristic curves of
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Figure 3 — The real total pressure difference-discharge characteristics
of the radial flow fan-impeller

The operating points are connected in Fig.3. by affine parabola. In this way an
approximate real performance curves of the fan impeller can be determined to get
information about the performance of fan impeller right after the design process and
before manufacturing of the fan impeller.
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