УДК 621.923

Ю.К. Новосёлов, д-р техн. наук, С.М. Братан, д-р техн. наук, В.Б. Богуцкий, Севастополь, Украина

АНАЛИТИЧЕСКАЯ ОЦЕНКА ПАРАМЕТРОВ ШЕРОХОВАТОСТИ ШЛИФОВАННЫХ ПОВЕРХНОСТЕЙ

Наведено методику розрахунку параметрів шорсткості поверхні для умов плоского та круглого зовнішнього шліфування.

Приведена методика расчета параметров шероховатости поверхности для условий плоского и круглого наружного шлифования.

The design procedure of surface roughness parameters for the conditions of the round external grinding.

Основными параметрами качества обрабатываемой поверхности являются ее шероховатость и глубина дефектного слоя. По ГОСТ 2789-73 регламентируются высотные параметры шероховатости: R_a , R_z , R_{max} . Обычно определение этих параметров сводится к табулированию профилограмм и дальнейшим вычислениям с помощью ЭВМ.

Процессы шлифования имеют сложную стохастическую природу, что приводит к разбросу показателей качества изделий и не позволяет использовать все возможности финишных методов. Микрорельеф шлифованной поверхности представляет собой совокупность отображений в материале заготовки поверхностей резания, образованных при движении режущих кромок инструмента в пространстве обрабатываемой заготовки. рисок определяется Форма единичных формой режущих кромок, особенностями контакта с материалом поверхности.

Аналитические зависимости для определения важнейших параметров шероховатости поверхности при условии, что случайный процесс. описывающий ординаты, является стационарным и нормальным, получены в работах Ю.Р. Витенберга, А.П. Хусу, Ю.В. Линника и ряда других исследователей. Параметры шероховатости вычислены по корреляционным функциям. Вид функции принимается известным, а её коэффициенты определяются на основе экспериментальных исследований процесса шлифования.

Основы прогнозирования важнейших параметров шероховатости поверхности по технологическим факторам рассмотрены в работах [5,9].

Известные зависимости с учетом влияние на неровности процессов, возникающих в динамической системе, существенно уточнены в работе [9], где расчет параметров шероховатости выполнен на основе функционалов, полученных при теоретическом анализе процессов формообразования поверхностей.

1. Среднее арифметическое отклонение профиля *R_a* вычисляется:

$$R_{a} = \frac{\sqrt{2V_{u}H_{u}^{3/2}}}{\pi^{2}K_{c}(V_{k}\pm V_{u})n_{g}\sqrt{D_{9}\rho_{g}}\sum_{i=0}^{n}(W_{m}-i\Delta r)^{3/2}} \quad \text{при } \Delta r < W_{m};$$
(1)

$$R_{a} = \frac{0,25V_{u}^{0,4}t_{f}^{0,6}}{K_{c}^{0,4}(V_{\kappa}\pm V_{u})^{0,4}n_{g}^{0,4}D_{9}^{0,2}\rho_{g}^{0,2}} \qquad \text{при } \Delta r \ge W_{m}.$$
(2)

где W_m – расстояние от наиболее глубокой впадины до средней линии профиля вычисляется из условия $y_m = 0$, P(M) = 0,5, $G_k \sum_{i=0}^n (W_m - i\Delta r)^v - \ln 2 = 0$. При величине радиального съема

металла $\Delta r \ge W_m$ $W_m = \left(\frac{\ln 2}{G_k}\right)^{1/\nu}$.

где
$$G_k = \frac{\sqrt{\pi D_3} \Gamma(m+1) \Gamma(\chi) \chi K_c C_b (V_\kappa \pm V_u) n_g}{\Gamma(m+\chi+3/2) V_u H_u^{\chi}}$$
 (3)

при частных значениях m = 0,5, $\chi = 1,5$ зависимость (3) принимает вид:

$$G_{k} = \frac{0.598 \sqrt{\pi \rho_{g} D_{9}} K_{c} (V_{\kappa} \pm V_{u}) n_{g}}{V_{u} H_{u}^{1,5}}$$
(4)

$$\Delta r = \frac{t_f^2}{1,478t_f + \frac{13,66V_u}{K_c(V_k \pm V_u)n_g\sqrt{D_s\rho_g}}};$$
(5)

$$t_f = 0,739\Delta r + \sqrt{0,546(\Delta r)^2 + \frac{13,66V_u\Delta r}{K_c(V_k \pm V_u)n_g\sqrt{D_9\rho_g}}};$$
(6)

где в формулах (1), (2), (3), (4), (5), (6): K_c – коэффициент стружкообразования (он показывает, что не весь материал удаляется из объема риски, а часть его вытесняется и образует по краям риски навалы); n_g – количество вершин зерен на единицу поверхности рабочего слоя круга; H_u – величина слоя рабочей поверхности круга по глубине, в пределах которого подсчитывается число абразивных зерен n_g ; P(M) – вероятность удаления металла; m и χ – показатели степенной зависимости; ρ_g – радиус округления при вершине зерна; V_k – скорость круга; V_u – скорость детали; D_2 – эквивалентный диаметр; Δr – радиальный съем материала.

Уравнения (1) и (2) по своей структуре и величине показателей степени близко к имеющимся в литературе степенным зависимостям, но в отличие от них отражает физическую природу процесса формообразования и соответствуют теории размерностей.

2. Наибольшая высота неровностей профиля R_{max} и высота неровностей профиля по десяти точкам R_z . Рассчитываются по величине слоя, в котором распределена шероховатость поверхности, и математическим ожиданиям расстояний от верхней границы слоя до пяти высших точек профиля и расстояний от нижней границы слоя до пяти низших точек профиля. Для стационарного процесса, близкого к нормальному, можно считать, что расстояния от верхней границы слоя шероховатости до наиболее выступающих вершин профиля распределены по законам, аналогичным распределению расстояний от впадин до нижней границы слоя. В этом случае математическое ожидание значений параметров R_{max} и R_z определяются как

$$M[R_{\rm max}] = H - 2\sqrt{\frac{2V_u t_f^{3/2}}{3n_g (V_k \pm V_u)L\sqrt{D_9}}};$$
(7)

$$M[R_{z}] = H - 2,95 \sqrt{\frac{V_{u} t_{f}^{3/2}}{n_{g} (V_{k} \pm V_{u}) L \sqrt{D_{9}}}}.$$
(8)

где $H = t_f - \Delta r$ – величина слоя шероховатости поверхности (размер переходной области материал – среда).

 Расстояние от линии выступов до средней линии и относительная опорная площадь на уровне средней линии определяется по параметрам кривой опорной поверхности и среднему арифметическому отклонению профиля:

$$R_{p} = \left[\frac{R_{a}(\nu_{p}+1)R_{\max}^{\nu_{p}}}{2b}\right]^{\frac{1}{\nu_{p}+1}};$$
(9)

$$t_{Rp} = \frac{R_a(v_p + 1)}{2R_p} \,. \tag{10}$$

Одним из основных параметров рабочей поверхности инструмента, в значительной степени влияющего на характеристики шероховатости обрабатываемой поверхности является радиус округления вершины зерна ρ_g . По данным Д.В. Ваксера [3], Г.М. Ипполитова [4] и ряда других исследователей [6,8], радиус при вершине зерна зависит от материала абразивного зерна, способа изготовления, зернистости, режима правки инструмента.

Текущий радиус округления зависит от его исходного значения, условий контакта абразивного зерна с обрабатываемым материалом, режима резания и времени работы инструмента. С увеличением τ закономерно увеличивается $\rho_g(\tau)$, на вершине зерна, в плоскости перпендикулярной вектору скорости резания, появляется радиусная площадка износа, наблюдается затупление абразивного зерна.

В общем случае можно записать

$$\rho_g(\tau) = K_{\rho_g} \cdot \rho_{g_0},\tag{11}$$

где K_{ρ_g} – коэффициент учитывающий изменение радиуса округления зерна в процессе работы абразивного инструмента; ρ_{g_0} – исходный радиус округления вершины зерна.

Для выполнения практических расчетов целесообразнее было бы использовать характеристики абразивного материала, приведенные в ГОСТ 3647-80 или в ISO 8486-1,2:1996(Е), такие как зернистость или основной размер абразивного зерна B_g . На основе анализа экспериментальных

данных, представленных в работах ряда авторов, составлена таблица 1 отражающая зависимость исходного радиуса округления вершин зерен ρ_{g_0} от основного размера абразивного зерна B_g .

	Зернистость по ГОСТ 3647-80 и ISO 8486-1,2:1996(Е)										
Источник	16	25	32	40	50	63	80	100	125	160	200
	F80	F60	F54	F46	F36	F30	F24	F20	F16	F12	F10
	Основной размер абразивных зерен B_g , мкм										
	160	240	315	400	500	630	800	1000	1250	1600	2000
	Исходный радиус округления вершин зерен ρ_{g_0} , мкм										
Байкалов А.К. [1]	13	19	Ι	28	Ι	Ι	Ι	-	-	114	
Маслов Е.Н. [7]	11	17	25		41			76	-	-	_
Мурдасов А.В. [8]	-	19	-	30	-	-	68	-	97	115	130
Ваксер Д.Б. [3]	14	21		30	١	I	I	-	-	-	_
Королев А.В. [5]	12	Ι	-	-	-	48	I	Ι	93	119	149
Божко Т.Е. [2]	13	19	27	28	38	_	60	-	_	_	_

Таблица 1 – Исходные радиусы округления вершин абразивных зерен ρ_{g_0} .

Аппроксимация степенной зависимости проводилась на основе данных приведенных в таблице 1 методом наименьших квадратов.

Полученная экспериментальная зависимость имеет вид:

$$\rho_{g_0} = 0.0535 \cdot B_g^{0.955} \tag{12}$$

В таблице 2 приведено сопоставление средних значений экспериментальных данных по таблице 1 и значений рассчитанных по формуле (12), графически это сравнение показано на рис. 1. Проверка по коэффициенту корреляции и критерию Фишера показала адекватность предложенной зависимости (12).

С учетом (12) зависимость (11) примет вид

$$\rho_g(\tau) = K_{\rho_g} \cdot \rho_{g_0} = 0,0535 \cdot K_{\rho_g} \cdot B_g^{0,955}, \tag{13}$$

		Зернистость по ГОСТ 3647-80 и ISO 8486-1,2:1996(Е)										
Источник	16	25	32	40	50	63	80	100	125	160	200	
	F80	F60	F54	F46	F36	F30	F24	F20	F16	F12	F10	
	Основной размер абразивных зерен В _g , мкм											
	160	240	315	400	500	630	800	1000	1250	1600	2000	
	Радиус округления вершин зерен ρ_{g_0} , мкм											
Среднее значение экспери- менталь- ных данных по табл. 1	12,6	19	26	29	39,5	48	64	76	95	115,3	139,5	
Расчетное значение по формуле (12)	12,8	19,4	24,5	30,7	38,1	47,6	59,6	74,3	92,4	115,4	143	

Таблица 2 – Сопоставление экспериментальных и расчетных значений радиусов округления вершин зерен ρ_{g_0} .

и основным размером абразивных зерен \mathbf{B}_{g}

Как показано в [9], для любой точки профиля абразивного зерна (рис. 2) радиус кривизны в полярных координатах вычисляется по уравнению:

$$\rho_{g}(\tau) = \frac{\left[R_{g}^{2}(\varphi,\tau) + R_{g}'^{2}(\varphi,\tau)\right]^{\frac{3}{2}}}{R_{g}^{2}(\varphi,\tau) + 2R_{g}'^{2}(\varphi,\tau) - R_{g}(\varphi,\tau)R_{g}''(\varphi,\tau)}.$$
(14)

При совмещении полюса полярных координат с центром кривизны вершины зерна для углов окрестности $\varphi_{\rho} = 0$ радиус-вектор исходного профиля равен ρ_{g_0} , а его текущее значение

$$R_g(\varphi_{\rho},\tau) = \rho_{g_0}(1 - \psi(\varphi_{\rho},\tau)) - \frac{H - u_{\rho}}{\cos \varphi_{\rho}} \psi(\varphi_{\rho},\tau),$$

где φ_{ρ} – полярный угол точек профиля вершины зерна; u_{ρ} – расстояние от максимальной впадины исходного профиля до центра кривизны исходного профиля вершины зерна.

Рисунок 2 – Схема к расчету изменения контура абразивного зерна

Текущий радиус округления вершины зерна вычисляется по текущему радиус-вектору и его первой и второй производным по уравнению (14) при $\varphi_{\rho} = 0$.

$$\rho_g(\tau) = \frac{(\rho_{g_0} + B - Be^A)^2}{\rho_{g_0} - A\rho_{g_0} - BA} e^{-A},$$
(15)

где за A и B обозначено: $A = \frac{h_0(V_k \pm V_u)\tau}{H}; B = H - u_\rho.$

Коэффициент учитывающий изменение радиуса округления зерна в процессе работы абразивного инструмента $K_{\rho_{g}}$ можно представить как

$$K_{\rho_g} = \frac{\rho_g(\tau)}{\rho_{g_0}},$$

или после выполнения преобразования

$$K_{\rho_g} = \frac{18,692H(0,0535B_g^{0.955} + (H - u_\rho)(1 - e^{\left(\frac{h_0(V_k \pm V_u)\tau}{H}\right)})^2 e^{-\left(\frac{h_0(V_k \pm V_u)\tau}{H}\right)}}{(0.0535B_g^{0.955}(1 - h_0(V_k \pm V_u)\tau) - h_0(V_k \pm V_u)(H - u_\rho)\tau)B_g^{0.955}},$$
 (16)

где h_0 – относительный износ абразивного материала; τ – время работы абразивного инструмента.

На рис. 3 показаны графики, позволяющие оценить влияние времени работы шлифовального круга на изменение радиуса округления вершины абразивного зерна.

Рисунок 3 – Влияние времени работы шлифовального круга на изменение радиуса округления вершины абразивного зерна $\rho_g(\tau)$ для различных величин основного размера абразивных зерен B_g

Количество зерен n_o на 1 мм² поверхности шлифовального круга, входящее в зависимости (1), (2), (4), (5), (6), (7), (8), также во многом определяется основным размером абразивных зерен В_о. В тоже время, имеющиеся экспериментальные данные свидетельствуют и о существенном изменении числа режущих кромок за период стойкости инструмента. Вследствие ограниченной прочности абразивных зерен и их заделки в инструменте при каждом контакте с обрабатываемым материалом часть зерен будет разрушаться или вырываться из круга. Одновременно в работу будут вступать новые режущие кромки, лежащие в глубинных слоях общем инструмента. Поэтому, случае можно в записать

$$n_g(\tau) = K_{n_g} \cdot n_{g_0} \tag{17}$$

где K_{n_g} – коэффициент учитывающий изменение количества абразивных зерен на рабочей поверхности круга в период между правками; n_{g_0} – исходное количество абразивных зерен на рабочей поверхности круга.

Исходное количество абразивных зерен на рабочей поверхности круга n_{g_0} определялось по [11] с учетом содержания абразивных зерен в круге V_g %, основного размера абразивных зерен по ГОСТ 3647-80 B_g , структуры и твердости (для кругов со структурами 5...6 и твердостью СМ1 $V_g = 45\%$ [4]) и аппроксимировалось методом наименьших квадратов, что позволило получить зависимость:

$$n_{g_0} = 0,62 \cdot B_g^{-1,99}, \frac{1}{M^2}.$$
 (18)

В таблице 3 приведено сравнение количества зерен на 1 мм² рассчитанных по [11] и расчетные значения по формуле (18), графически это сравнение показано на рисунке 4. Проверка по коэффициенту корреляции и критерию Фишера показала значимость уравнения (18).

	Зернистость по ГОСТ 3647-80 и ISO 8486-1,2:1996(Е)										
	16	25	32	40	50	63	80	100	125	160	200
	F80	F60	F54	F46	F36	F30	F24	F20	F16	F12	F10
	Основной размер абразивных зерен В _g , мкм										
	160	240	315	400	500	630	800	1000	1250	1600	2000
	Количество зерен, $n_{g_0}, \frac{1}{_{MM}^2}$										
Значение по [11]	23,2	9,2	5,7	3,56	2,28	1,44	0,89	0,57	0,366	0,224	0,144
Расчетное значение по формуле (18)	22,4	9,4	5,6	3,57	2,29	1,44	0,89	0,57	0,369	0,226	0,145

Таблица 3 – Сопоставление значений исходного количества абразивных зерен n_{g_0}

С учетом (18) формула (17) примет вид

$$n_g(\tau) = K_{n_g} \cdot n_{g_0} = 0,62 \cdot K_{n_g} \cdot B_g^{-1,99}, \frac{1}{M^2}$$
(19)

В работе [9] выведена зависимость, позволяющая рассчитать изменение числа зерен за период между правками абразивного инструмента;

$$n_g(\tau) = \frac{z_g}{P_p} + \left(n_{g_0} - \frac{z_g}{P_p}\right) (1 - P_p)^{\nu_k \tau} , \qquad (20)$$

где z_g – число абразивных зерен, вступающих в работу при *i* -м контакте инструмента с поверхностью; P_p – вероятность разрушения зерна; v_k – частота вращения круга; τ – время работы круга после правки.

В общем случае z_g зависит от числа зерен на поверхности инструмента после правки n_{g0} , закона распределения зерен по глубине, радиального износа круга, прочности закрепления зерен и сил резания, возникающих в зоне контакта, которые являются случайными величинами. Так, если нагрузка на вершины зерен при шлифовании не превышает 4 H, то вероятность вырывания зерна из связки P_p не превышает 0,01. С увеличением нагрузки вероятность P_p – растет: для $P_z = 8H$ вероятность $P_p \Rightarrow 0,20$, при $P_z = 10H$ $P_p \approx 0,50$. С дальнейшим увеличением P_z . вероятность P_p приближается к своему максимальному значению около 0,87 ($P_z = 15H$). [12]

Рисунок 4 – Сопоставление зависимостей между основным размером абразивных зерен B_g (зернистостью) и количеством зерен на 1 мм² поверхности шлифовального круга n_{g0} : 1 – результаты расчета по формуле (18); 2 – по данным [11]

Коэффициент учитывающий изменение числа зерен на поверхности инструмента в процессе его работы K_{n_g} можно представить как или после выполнения преобразования с учетом зависимостей (18) и (20)

$$K_{n_g} = \frac{n_g(\tau)}{n_{g_0}}$$

$$K_{n_g} = 1,613 \left(\frac{z_g \left(1 - (1 - P_p)^{\nu_k \tau} \right)}{P_p} + \frac{0,62(1 - P_p)^{\nu_k \tau}}{B_g^{1,99}} \right) B_g^{1,99}$$
(21)

На рис. 5 показаны зависимости, позволяющие оценить влияние времени на изменение количества абразивных зерен n_g на 1 мм² поверхности шлифовального круга при работе круга в режиме затупления.

С учетом полученных зависимостей (13)и (19) формулы для расчета характеристик шероховатости поверхности (1), (2),(5),(6),(7),(8) примут вид:

$$R_{a} = \frac{1,017V_{u}H_{u}^{1,5}}{K_{c}K_{n_{g}}(V_{k}\pm V_{u})\sqrt{K_{\rho_{g}}B_{g}^{-3.025}D_{3}}\sum_{i=0}^{n}(W_{m}-i\Delta r)^{1,5}} \quad \text{при } \Delta r < W_{m}; \quad (22)$$

$$R_{a} = \frac{0.544V_{u}^{0,4}t_{f}^{0,6}B_{g}^{0,005}}{K_{c}^{0,4}K_{n_{g}}^{0,4}K_{\rho_{g}}^{0,2}(V_{\kappa}\pm V_{u})^{0,4}D_{9}^{0,2}} \quad \text{при } \Delta r \ge W_{m}.$$
(23)

где

$$\Delta r = \frac{t_f^2}{1,478t_f + \frac{95,254V_u B_g^{1,51}}{K_c K_{n_g} (V_k \pm V_u) \sqrt{K_{\rho_g} D_9}}}$$

$$t_f = 0,739\Delta r + \sqrt{0,546 \cdot \Delta r^2 + \frac{22.03V_u \Delta r B_g^{1.51}}{K_c K_{n_g} (V_k \pm V_u) \sqrt{K_{\rho_g} D_9}}};$$
(24)

$$M[R_{\max}] = H - 2,074 \sqrt{\frac{V_u t_f^{1.5} B_g^{1.99}}{K_{n_g} (V_k \pm V_u) L \sqrt{D_9}}};$$
(25)

ISSN 2078-7405. Резание и инструмент в технологических системах, 2013, выпуск 83

Рисунок 5 – Влияние времени работы шлифовального круга на изменение количества зерен на 1 мм² поверхности $n_{\varrho}(\tau)$ для различных величин B_{ϱ}

На рис. 6 показаны графики, иллюстрирующие влияние времени работы шлифовального круга на параметры шероховатости обрабатываемой поверхности. Все расчеты выполнены с соблюдением размерностей, рекомендованных системой СИ.

В оптимальную систему характеристик шероховатости, кроме вышеперечисленных, входят параметры кривой опорной поверхности: расстояние от линии выступов до средней линии R_p , относительная опорная площадь на уровне средней линии t_{Rp} [13].

При оценке несущей способности шероховатости кривая опорной построенная относительных поверхности, координатах, обычно в описывается уравнением $t_p = b \varepsilon^{V_p}$ (ε – относительное расстояние от линии выступов, $\varepsilon = Y / R_{\text{max}}$, где Y – расстояние от линии выступов до уровня). При выражении рассматриваемого через технологические параметры коэффициенты аппроксимирующего уравнения кривой опорной поверхности легко получить методом наименьших квадратов, имея расчетные значения t_n. С достаточной точностью (±2,8%) они могут быть определены также по двум, трем точкам действительной кривой. Так, расчетные значения t_p для точек с координатами $Y = 0,25R_{\text{max}}$ и $Y = 0,5R_{\text{max}}$ соответственно равны [9]

Рисунок 6 – Влияние времени работы шлифовального круга τ на параметры шероховатости R_z и R_a ($B_g = 320_{MKM}$)

$$t_{25} = \exp\left[-G\sum_{i=0}^{n} \left(\frac{t_f - \Delta r}{2} + \frac{R_{\max}}{4} - i\Delta r\right)^{5/2}\right] :; t_{50} = \exp\left[-G\sum_{i=0}^{n} \left(\frac{t_f - \Delta r}{2} - i\Delta r\right)^{5/2}\right] (27)$$

При вычислении по аппроксимирующему уравнению

$$t_{25} = b(0,25)^{\nu_p}, \ t_{50} = b(0,5)^{\nu_p}$$
 .(28)

Совместное решение уравнений (27) и (28) с учетом уравнений (13), (19) дает

$$v_p = 1,443G\left(\sum_{i=0}^{n} \left(\frac{t_f - \Delta r}{2} + \frac{R_{\max}}{4} - i\Delta r\right)^{2.5} - \sum_{i=0}^{n} \left(\frac{t_f - \Delta r}{2} - i\Delta r\right)^{2.5}\right)$$
(29)

$$b = \frac{\exp\left(G\sum_{i=0}^{n} (0,5(t_f - \Delta r) - i\Delta r)^{2,5}\right)}{0,5^{\left(1,443G\left(\sum_{i=0}^{n} (0,5(t_f - \Delta r) + 0.25R_{\max} - i\Delta r)^{2,5} - \sum_{i=0}^{n} (0,5(t_f - \Delta r) - i\Delta r)^{2,5}\right)\right)}$$
(30)

где -----
$$G = \frac{0,256K_c K_{n_g} (V_{\kappa} \pm V_u) \sqrt{K_{\rho_g} D_g}}{V_u H_u^{1,5} B_g^{1.5125}}$$

По параметрам кривой опорной поверхности и среднему арифметическому отклонению профиля могут быть определены расстояние от линии выступов до средней линии и относительная опорная площадь на уровне средней линии

$$R_{p} = \left[\frac{R_{a}(v_{p}+1)R_{\max}^{v_{p}}}{2b}\right]^{\frac{1}{v_{p}+1}}; \quad t_{Rp} = \frac{R_{a}(v_{p}+1)}{2R_{p}}$$

Сопоставление расчетных и экспериментальных значений относительной опорной длины профиля для процесса круглого наружного шлифования образцов из стали 9X2 диаметром 50 мм кругами 1-300х40х127 24A 25-H CM2 4Б приведено на рис. 7 ($K_c = 0,9$; $V_k = 35$ м/с; $V_u = 0,25$ м/с; $n_g = 5,2$ 1/мм²; $\rho_g = 0,021$ мм; $t_f = 0,0116$ мм; $\Delta r = 3,3\cdot10^{-3}$ мм; значение базовой длины L = 0,8 мм). Линии 2 ограничивают область, в которой разместились десять экспериментальных кривых при совмещении их точек со средней линией профиля. Вычисленные значения относительной опорной длины профиля для всех уровней не выходят за пределы разброса экспериментальных.

Рисунок 7 – Опорные кривые шлифованной поверхности: 1 – расчетные значения, 2 – область экспериментальных значений Особенностью полученных уравнений является то, что при расчетах учитываются параметры режима резания, размер зерна шлифовального круга, а также изменение состояния рабочей поверхности инструмента в процессе обработки. Это позволяет оценить влияние на параметры шероховатости многопроходности процесса шлифования.

Предложенные зависимости позволяют прогнозировать кинетику изменения параметров шероховатости. В уравнения (25) и (26) неявно входит вероятность удаления материала, которая вычисляется с учетом шероховатости заготовки и ее изменений при каждом контакте поверхности с инструментом.

Список использованных источников: 1. Байкалов А.К. Введение в теорию шлифования материалов /А.К.Байкалов. - Киев: Наукова думка, 1978. - 207 с. 2. Божко Т.С. Формування поверхневого шару у деталей із порошкових матеріалів при шліфуванні./Дисертація на здобуття наукового ступеню кандидата технічних наук. Луцьк, 2011. 3. Ваксер Д.Б. Влияние геометрии абразивного зерна на свойства шлифовального круга /Д.Б.Ваксер // Основные вопросы высокопроизводительного шлифования: сб. М.: Машгиз, 1960. – 165 с. 4. Ипполитов Г.М. Абразивно-алмазная обработка/ Г.М.Ипполитов, М., Машиностроение, 1969, 334 с. 5. Королев А.В. Теоретико-вероятностные основы абразивной обработки. Ч.І/А.В.Королев, Ю.К.Новоселов. - Саратов: Саратовск. ун-т, 1987. - 160 с. 6. Кремень З.И. Технология шлифования в машиностроении/ З.И.Кремень, В.Г.Юрьев. А.Ф.Бабошкин; под общ. ред. З.И.Кремня. - СПб.: Политехника, 2007. - 424 с. 7. Маслов Е.Н. Теория шлифования металлов/Е.Н.Маслов. М.: Машиностроение, 1974. - 400 с. 8. Мурдасов А.В. Особенности работы шлифовальных кругов из абразивного зерна разной формы/ А.В.Мурдасов, А.М.Вульф //Абразивы и алмазы: науч. технич. реф. сб. – М.: НИИМАШ, 1967. №4. – С.65-69. 9. Новоселов Ю.К. Динамика формообразования поверхностей при абразивной обработке./ Ю.К.Новоселов – Севастополь: Из-во СевНТУ, 2013. – 304 с. 10. Пермяков А.А. Повышение эффективности предварительного шлифования прокатных валков за счет восстановления режущей способности круга без правки/ А.А.Пермяков, А.А.Жижев. Вісник СевНТУ: зб. наук. пр. Вип. 118/2011. Серія: Машиноприладобудування та транспорт. — Севастополь, 2011. 11. Абразивная и алмазная обработка материалов. Справочник / Под ред. Резникова А.Н.. — М.: Машиностроение, 1977. — 391 с. 12. Крутикова А.А. Вероятности видов изнашивания зерен абразивного инструмента и их взаимосвязь с характеристикой круга/А.А. Крутикова, М.В.Даниленко. Материалы III Международной научной студенческой конференции «Научный потенциал студенчества в XX веке». Том первый. Технические и прикладные науки. г. Ставрополь: СевКавГТУ, 2009. - 278 с. 13. Рыжов Э.В. Технологическое обеспечение эксплуатационных свойств деталей машин / Э.В. Рыжов, А.Г. Суслов, В.П. Федоров. - М.: Машиностроение, 1979. - 176 с.

Поступила в редколлегию 15.11.2012