ІНТЕГРОВАНІ ТЕХНОЛОГІЇ МАШИНОБУДУВАННЯ

УДК 621.7

В.Л. ДОБРОСКОК, д-р техн. наук, **Л.Н. АБДУРАЙИМОВ**, **С.И. ЧЕРНЫШОВ**, канд. техн. наук, **М.М. БУДЕННЫЙ**, канд. техн. наук, Харьков, Украина

КРИТЕРИИ КАЧЕСТВА ТРИАНГУЛЯЦИИ 3D МОДЕЛЕЙ ПРОМЫШЛЕННЫХ ИЗДЕЛИЙ

У статті розглянуті критерії якості тріангуляції 3D моделей промислових виробів, одержуваних в CAD-системах для наступної матеріалізації інтегрованими технологіями (Rapid Prototyping). Розглянуті існуючі й запропоновані нові узагальнені нормалізовані критерії, що дозволяють підвищити рівень оцінки якості тріангуляції.

В статье рассмотрены критерии качества триангуляции 3D моделей промышленных изделий, получаемых в CAD-системах для последующей материализации интегрированными технологиями (Rapid Prototyping). Рассмотрены существующие и предложены новые обобщенные нормализованные критерии, позволяющие повысить уровень оценки качества триангуляции.

V.L. DOBROSKOK, L.N. ABDURAJIMOV, S.I. CHERNYSHOV, M.M. BUDYONNIY CRITERIA OF QUALITY OF THE TRIANGULATION 3D MODELS OF INDUSTRIAL PRODUCTS

The article considers the quality criteria of the triangulation of 3D models of industrial products, obtained in CAD-systems for further materialization by integrated technologies (Rapid Prototyping). Reviewed existing and proposed new summarized and normalized criteria to improve the quality evaluation of the triangulation.

Постановка проблемы

Высокие требования к техническим характеристикам промышленных изделий, получаемых технологиями Rapid Prototyping, определяют необходимость использования качественных исходных 3D моделей.

Современные системы твердотельного 3D моделирования, оперируют объектами, называемыми телами. В общем случае твердотельный объект может быть построен на базе связанных поверхностей различных типов, ограничивающих занимаемую телом часть пространства. Могут использоваться как плоские, так и криволинейные поверхности различных порядков. При подготовке моделей для последующей материализации используются только плоские поверхности. Тогда такие тела называют многогранниками [8] (полигонами, плоскогранными или фасеточными) [4]. Криволинейные поверхности аппроксимируют системой треугольных или

четырехугольных плоских граней с использованием специальных алгоритмов преобразования. Процесс, при котором формообразующие поверхности твердого тела аппроксимируются системой треугольных граней, называется дискретизацией или триангуляцией (триангулированием) [5]. В свою очередь, треугольники могут быть как криволинейными, так и прямолинейными. Применительно к технологиям Rapid Prototyping рассматривается только триангуляция прямолинейными треугольниками.

Для практических целей используются различные методы триангуляции. Все методы триангуляции по принципу построения можно разбить на два больших класса: прямые [3] и итерационные [2] (рис. 1). По сфере применения можно выделить две схемы триангуляции (рис. 2):

- двумерная, когда плоский многоугольник покрывается множеством треугольников (рис. 2, a);
- трехмерная, которая может использовать в качестве элементов аппроксимации, как плоские треугольники (рис. 2, δ), так и тетраэдры (рис. 2, ϵ). В первом случае поверхность модели покрывается множеством связанных и неперекрывающихся между собой 4-х треугольников { $V_1V_2V_3$, $V_1V_4V_2$, $V_3V_2V_4$, $V_1V_3V_4$ }. Во втором случае внутренний объем трехмерного тела разбивается на множество неперекрывающихся между собой 8-ми тетраэдров { $V_1V_5V_8V_{10}$, $V_2V_5V_6V_7$, $V_3V_7V_9V_{10}$, $V_4V_6V_8V_9$, $V_5V_6V_7V_{10}$, $V_5V_6V_8V_{10}$, $V_6V_7V_9V_{10}$, $V_6V_8V_9V_{10}$ }.

Качество изготавливаемых промышленных изделий достигается за счет использования достаточно точных и корректных триангуляционных 3D моделей. Причем качество триангуляции зависит как от количества треугольников, так и от их геометрических характеристик.

Поскольку триангуляционная модель формируется на базе твердотельной CAD модели изделия, то следует выявить связь критериев качества с аппроксимационными свойствами триангуляционной модели.

Анализ литературы

Качество модели существенно зависит от геометрических характеристик элементов аппроксимации [6, 7]. В настоящее время, применительно к трехмерной триангуляции моделей изделий тетраэдрами, предложено достаточно много специальных критериев качества [3, 7, 9, 10, 11].

В табл. 1 приведены критерии качества с расчетными формулами, интервалами возможных значений и оптимальными значениями, которые рассчитаны для идеального случая — правильного тетраэдра. Значения приведены с точностью до 6 значащих цифр.

Основным недостатком приведенных критериев является различие интервалов возможных значений (табл. 1), что существенно затрудняет оценку качества триангуляции 3D моделей.

Цель статьи — рассмотреть существующие и предложить новые обобщенные нормализованные критерии, позволяющие повысить уровень оценки качества триангуляции.

Изложение основного материала

В результате анализа была предложена система обобщенных нормализованных критериев качества триангуляции: дифференциальных (на уровне треугольников) и интегральных (на уровне модели в целом). Нормализация критериев обеспечивается путем ввода в расчетные зависимости нормализующих коэффициентов для приведения интервалов возможных значений к единому диапазону (0, 1]. Значение 0 (левая граница интервала возможных значений) критерии принимать не могут в связи исключения из рассмотрения вырожденных треугольников с нулевыми линейными и угловыми характеристиками. Оптимальные значения критериев рассчитывались для случая правильного треугольника и для всех критериев соответствуют 1 (правая граница интервала возможных значений). Условно критерии качества триангуляции можно разделить на две группы — на базе линейных и угловых характеристик треугольников.

Применительно к единичному элементу триангуляционной модели (рис. 3) приведем дифференциальные критерии качества:

• отношение длины наименьшей стороны треугольника $l_{\min} = \text{MIN}(l_1, l_2, l_3)$ к радиусу описанной окружности R:

$$Q_1 = \frac{1}{\sqrt{3}} \frac{l_{\min}}{R}; \tag{1}$$

• отношение радиуса вписанной окружности r к длине наибольшей стороны треугольника $l_{\max} = \text{MAX}(l_1, l_2, l_3)$:

$$Q_2 = 2\sqrt{3} \frac{r}{l_{\text{max}}}; \tag{2}$$

• отношение радиуса вписанной окружности r к радиусу описанной R:

$$Q_3 = 2\frac{r}{R}; (3)$$

• отношение длин наименьшей стороны треугольника $l_{\min} = \text{MIN}(l_1, l_2, l_3)$ к наибольшей $l_{\max} = \text{MAX}(l_1, l_2, l_3)$:

$$Q_4 = \frac{l_{\min}}{l_{\max}}; \tag{4}$$

• отношение площади треугольника S к сумме квадратов длин его сторон $l_1^2 + l_2^2 + l_3^2$:

$$Q_5 = 4\sqrt{3} \frac{S}{\sum_{i=1}^{3} l_i^2}; (5)$$

• отношение наименьшего $\varphi_{\min} = \text{MIN}(\varphi_1, \varphi_2, \varphi_3)$ угла треугольника к наибольшему $\varphi_{\max} = \text{MAX}(\varphi_1, \varphi_2, \varphi_3)$:

$$Q_6 = \frac{\varphi_{\min}}{\varphi_{\max}}; \tag{6}$$

• отношение площадей вписанных S_r и описанных S_R окружностей треугольника:

$$Q_7 = 4\frac{S_r}{S_R};\tag{7}$$

• отношение площади треугольника S к квадрату длины наибольшей его стороны $l_{\max}^2 = \text{MAX}(l_1, l_2, l_3)^2$:

$$Q_8 = \frac{4}{\sqrt{3}} \frac{S}{l_{\text{max}}^2} \,. \tag{8}$$

Из приведенного списка критериев качества можно исключить критерии Q_7 , Q_8 , т. к. они являются производными от Q_3 , Q_5 соответственно, тогда критерии $Q_1 \dots Q_6$, будут являться наиболее представительными.

В качестве основных интегральных критериев качества триангуляции в работе рассматривались:

• среднее арифметическое значений дифференциальных критериев качества:

$$Q_{a} = \frac{1}{N} \sum_{i=1}^{N} Q_{i};$$
 (9)

где: N — количество элементов триангуляции;

• среднее гармоническое значений дифференциальных критериев качества:

$$Q_{g} = N / \sum_{i=1}^{N} \frac{1}{Q_{i}}.$$
 (10)

Особенностью среднего гармонического, как общего показателя качества модели, является повышенная чувствительность к появлению отдельных малых значений.

Сравнительный анализ качества триангуляции систем 3D моделирования промышленных изделий выполнялся для наиболее распространенных CAD-систем: SolidWorks, PowerSHAPE, KOMПAC-3D, T-FLEX Parametric CAD, AutoCAD, Geomagic Studio, MeshLab, Magics. В качестве тестовых моделей были выбраны базовые геометрические тела, наиболее часто используемые в машиностроении: куб, цилиндр, конус и сфера (рис. 4). Предварительные расчеты показали, что наиболее целесообразно использовать критерий Q_2 — отношение радиуса вписанной окружности к длине наибольшей стороны треугольника.

Значения интегральных критериев качества триангуляции тестовых моделей приведены в табл. 2. Для каждой модели указано количество элементов (треугольников и вершин), полученных при экспорте из соответствующей САD-системы в триангуляционное представление. Параметры экспорта модели выбирались по умолчанию. Отличия в количестве элементов аппроксимации у одинаковых моделей свидетельствует о применении САD-системами различных собственных алгоритмов триангуляции. В таблице также приведены минимальные Q_{\min} , средние арифметические Q_{a} и гармонические Q_{g} значения выбранного критерия качества.

Анализ результатов (табл. 2) позволяет ранжировать рассмотренные 3D CAD-системы моделирования по степени убывания качества триангуляции следующим образом: *Geomagic Studio*, *MeshLab*, *KOMПAC-3D*, *AutoCAD*, *T-FLEX Parametric CAD*, *SolidWorks*, *PowerSHAPE* и *Magics*.

Выводы

Предложенные новые обобщенные нормализованные критерии позволяют существенно повысить уровень оценки качества триангуляции 3D моделей. Нормализация критериев обеспечивается путем ввода в расчетные зависимости нормализующих коэффициентов для приведения интервалов возможных значений к единому диапазону (0, 1]. Оптимальные значения соответствуют 1 (правильный треугольник).

Сравнительный анализ качества триангуляции систем 3D моделирования промышленных изделий для наиболее распространенных CAD-систем: SolidWorks, PowerSHAPE, KOMПAC-3D, T-FLEX Parametric CAD, AutoCAD, Geomagic Studio, MeshLab, Magics показал работоспособность предложенного подхода.

Результаты работы создают методологическую основу для последующего изучения характеристик триангуляционных моделей.

Список использованных источников: 1. Возможности современных САD систем при триангулированным моделям / В.Л. Доброскок, Я.Н. Гаращенко, С.И. Чернышов [и др.] // Високі технології в машинобудуванні: зб. наук. праць. – 2010. - Вип. 1 (20). - С. 79-86. **2.** Галанин М.П. Разработка и реализация алгоритмов трехмерной триангуляции сложных пространственных областей: итерационные методы / Галанин М.П., Щеглов И.А. - М.: ИПМ им. М.В. Келдыша РАН, 2006. - № 9. - 32 с. -(Препринт / РАН, ИПМ им. М.В. Келдыша; 06-01-00421). 3. Галанин М.П. Разработка и реализация алгоритмов трехмерной триангуляции сложных пространственных областей: прямые методы / Галанин М.П., Щеглов И.А. – М.: ИПМ им. М.В. Келдыша РАН, 2006. – № 10. – 32 с. – (Препринт / РАН, ИПМ им. М.В. Келдыша ; 06-01-00421). 4. Голованов Н.Н. Геометрическое моделирование / Н.Н. Голованов. – М.: Изд-во Физ.мат. лит., 2002. – 472 с. 5. Скворцов А.В. Обзор алгоритмов построения триангуляции Делоне / А.В. Скворцов // Вычислительные методы и программирование. — 2002. — Т.3. – С. 14-39. **6.** Сьярле Ф. Метод конечных элементов для эллиптических задач / Ф. Сьярле; пер. с англ. Б.И. Квасова. – М.: Изд-во «Мир», 1980. – 512 с. 7. Шайдуров В.В. Многосеточные методы конечных элементов / В.В. Шайдуров. – М.: Наука. Гл. ред. физ.-мат. лит., 1989. – 288 с. 8. Энциклопедия элементарной математики: В 5 т. / Физматгиз. – М., 1963. – Т. 4: Геометрия. – 568 с. 9. Mesh Generation for Technology CAD in Three Dimensions [Электронный ресурс] / P. Fleischmann // Dissertation. - 1999. - Режим доступа: http://www.iue.tuwien.ac.at /phd/fleischmann/diss.html. 10. Sequential and Parallel Generation of Unstructured 3D Meshes [Электронный ресурс] / D. Rypl // Thesis. – 2005. – Режим доступа: http://power2.fsv.cvut.cz/~dr/papers/. 11. Zheng Y. Three-dimensional unstructured mesh generation: Part 3. Volume meshes / Y. Zheng, R.W. Lewis, D.T. Gethin // Comput. Methods Appl. Mech. Engrg. – 1996. – Vol. 134. -- P. 285-310.

Bibliography (transliterated): 1. Vozmozhnosti sovremennyh CAD sistem pri perehode k triangulirovannym modeljam / V.L. Dobroskok, Ja.N. Garawenko, S.I. Chernyshov [i dr.] // Visoki tehnologii v mashinobuduvanni: zb. nauk. prac'. – 2010. – Vip. 1 (20). – S. 79-86. 2. Galanin M.P. Razrabotka i realizacija algoritmov trehmernoj trianguljacii slozhnyh prostranstvennyh oblastej: iteracionnye metody / Galanin M.P., Weglov I.A. - M.: IPM im. M.V. Keldysha RAN, 2006. – N_{2} 9. – 32 s. - (Preprint / RAN, IPM im. M.V. Keldysha; 06-01-00421). 3. Galanin M.P. Razrabotka i realizacija algoritmov trehmernoj trianguljacii slozhnyh prostranstvennyh oblastej: prjamye metody / Galanin M.P., Weglov I.A. – M.: IPM im. M.V. Keldysha RAN, 2006. – № 10. – 32 s. – (Preprint / RAN, IPM im. M.V. Keldysha; 06-01-00421). 4. Golovanov N.N. Geometricheskoe modelirovanie / N.N. Golovanov. – M.: Izd-vo Fiz.-mat. lit., 2002. - 472 s. 5. Skvorcov A.V. Obzor algoritmov postroenija trianguljacii Delone / A.V. Skvorcov // Vychislitel'nye metody i programmirovanie. – 2002. – T.3. – S. 14-39. 6. S'jarle F. Metod konechnyh jelementov dlja jellipticheskih zadach / F. S'jarle; per. s angl. B.I. Kvasova. - M.: Izd-vo «Mir», 1980. - 512 s. 7. Shajdurov V.V. Mnogosetochnye metody konechnyh jelementov / V.V. Shajdurov. – M.: Nauka. Gl. red. fiz.mat. lit., 1989. – 288 s. 8. Jenciklopedija jelementarnoj matematiki: V 5 t. / Fizmatgiz. – M., 1963. - T. 4: Geometrija. - 568 s. 9. Mesh Generation for Technology CAD in Three Dimensions [Jelektronny] resurs] / P. Fleischmann // Dissertation. - 1999. - Rezhim dostupa: http://www.iue.tuwien.ac.at /phd/fleischmann/diss.html. 10. Sequential and Parallel Generation of Unstructured 3D Meshes [Jelektronnyj resurs] / D. Rypl // Thesis. – 2005. – Rezhim dostupa: http://power2.fsv.cvut.cz/~dr/papers/. 11. Zheng Y. Three-dimensional unstructured mesh generation: Part 3. Volume meshes / Y. Zheng, R.W. Lewis, D.T. Gethin // Comput. Methods Appl. Mech. Engrg. – 1996. – Vol. 134. – P. 285-310.