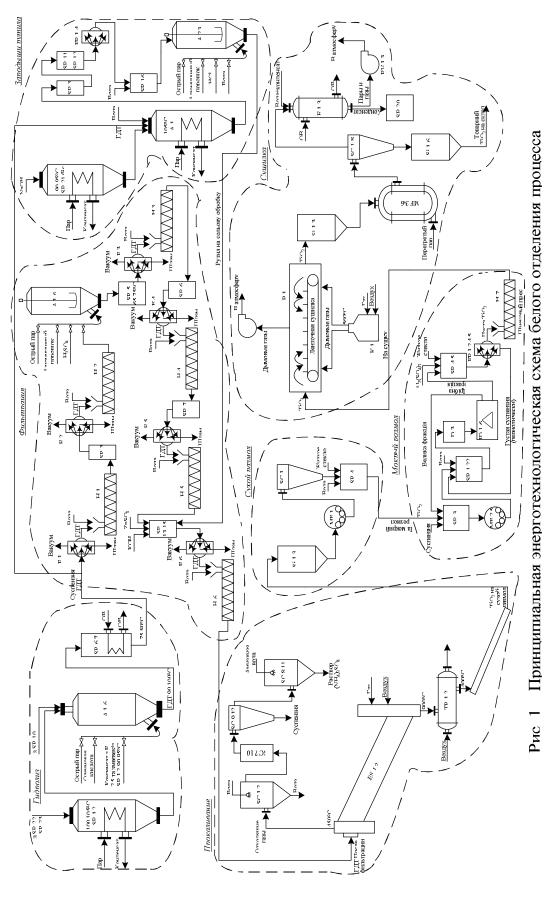
Л.М. УЛЬЕВ, докт. техн. наук, проф., НТУ «ХПИ», **А.А. КОВАЛЬЧУК**, аспирант, НТУ «ХПИ»

ОПРЕДЕЛЕНИЕ ЭНЕРГОСБЕРЕГАЮЩЕГО ПОТЕНЦИАЛА ДЛЯ ПРОЦЕССА ОЧИСТКИ ЦЕЛЕВОГО ПРОДУКТА ПРИ ПРОИЗВОДСТВЕ ПИГМЕНТНОЙ ДВУОКИСИ ТИТАНА

У роботі наведені, економічний та енергетичний потенціал енергозбереження, отримані шляхом інтеграції процесів спроектованого підприємства. Завдяки цим двом показникам зрозуміло, що після впровадження проекту, підприємство зможе заощаджувати ~ 8735781 грн. Якщо розглядати заощадження з точки зору енергоносіїв, то витрата гарячих зменшиться на $\sim 50\%$, а холодних $\sim 73\%$. Що має велике значення у часи збільшення цін на енергоносії

В работе приведены, экономический и энергетический потенциал энергосбережения, полученные путем интеграции процессов спроектированного предприятия. Благодаря этим двум показателям понятно, что после внедрения проекта, предприятие сможет экономить \sim 8735781 грн. Если рассматривать сбережения с точки зрения энергоносителей, то расход горячих уменьшится на \sim 50%, а холодных \sim 73%. Что весьма существенно во времена роста цен на энергоносители


In work is shown, economic and power potential is energy-savingss, got by integration of processes of the projected enterprise. Due to these two indexes clearly, that after introduction of project, a that enterprise will be able to save ~ 8735781 Uah. If to examine an economy from point sight of power mediums, then consumption of hot reduced by $\sim 50\%$, or cold $\sim 73\%$. That matters very much in the days of the increase of prices on power mediums

Введение. В связи с тем, что мировые цены на энергоносители постоянно возрастают, проблема энергосбережения является актуальной для промышленности Украины. В Украине, по различным причинам, системные энергосберегающие методы не применялись, поэтому удельное энергопотребление здесь в 3 – 5 раз больше, чем у западных компаний. Одним из методов сокращения энергозатрат является пинч – анализ. С помощью методов интеграции тепловых процессов можно достичь качественного улучшения процесса проектирования, сокращения затрат на энергоносители, уменьшения выбросов вредных веществ в окружающую среду, лучшего использования капитальных вложений, повышение продуктивности после реконструкции. На химических предприятиях сосредоточены все технологические линии производства продукции, от приема или производства исходных компонентов и до отгрузки расфасованной и упакованной коммерческой продукции. Поэтому для увеличения конкуренто-

способности отечественных предприятий, и это особенно важно при вхождении Украины во Всемирную торговую организацию, необходимо срочно снижать удельное энергопотребление в промышленности страны.

Экстракция потоковых данных. Обследуемый процесс включает в себя получение компонентов для производства красок, бумаги, полимерных материалов, резины, химических волокон и т.п. продуктов. Во время проведения энергоаудита предприятие работало в обычном режиме. Рассмотрим, что происходит на каждом участке производства (рис. 1):

- 1) Гидролиз предназначен для осаждения из раствора титанилсульфата частиц гидратированной двуокиси титана (ГДТ) в форме, обеспечивающей в дальнейшем получение пигментной двуокиси титана.
- 2) Зародыши рутила добавляются в суспензию ГДТ после 5 стадии фильтрации и способствуют превращению двуокиси титана анатазной формы в рутильную в прокалочных печах при более низких температурах прокаливания.
- 3) Фильтрация удаляет из ГДТ соли железа, других металлов и серной кислоты. Сульфирование на стадии отбелки: восстановление 3-х валентного железа до 2-х валентного с целью облегчения его отмывки на последующих стадиях фильтрации. Сульфирование на стадии солевой обработки: получение при прокалке рутильной модификации двуокиси титана.
- 4) Прокаливание переводит аморфную двуокись титана в кристаллическую рутильной модификации. Очистка отходящих газов производится на установках газоочистки «Баумко».
 - 5) Сухой размол измельчает двуокись титана после прокаливания.
- 6) Мокрый размол и классификация предназначены для дополнительного измельчения частиц продукта до величины не более 15 микрон. Поверхностная обработка производится с целью ослабления свойства «меления» в лакокрасочном покрытии путём создания на поверхности частиц двуокиси титана защитного слоя из гидроокиси цинка, алюминия и кремния. Фильтрация отмывает двуокись титана от водорастворимых солей.
- 7) Сушка удаляет всю влагу из двуокиси титана после мокрого размола. Высушенная двуокись титана размельчается в пароструйных мельницах и готовый продукт отгружается на склад [3].

SR 1, 2, 21 бис, А 1 подогреватели; SR 6,7 охладители; А 1÷6, А 2,3, А 1,6 реакторы; SR 3 22 ёмкости; FR 1 4 фильтры; Н 1 7 шнековые прессы; F 1 6 вакуум фильтры; ES 1,2 печи; ТВ 1,2 вращающиеся холодильные барабаны; SC 1, 2, 7, 10, 9, 12, 8, 11 циклоны; МЕ 1, 2, 5 шаровые мельницы; Е 1 3 теплообменники; Р 1 сушилка; К 1 печь производства пигментной двуокиси титана

Потребление пара и охлаждающей воды технологическими процессами предприятия в табл. 1.

Таблица 1 Энергетическая мощность основных теплоиспользующих и холодоиспользующих объектов предприятия

$N_{\underline{0}}$	Потребители пара и воды	Количество, кг/с	Количество, кВт
1	Мельница, Гидролиз, Рутил, Отбелка, Анатаз	4,08	7391
2	Охладители	16,88	5033

Итак, мы видим, что основной потребитель тепловой энергии использует 4,08 килограмма пара в секунду, что эквивалентно общей мощности, равной ~ 7391 кВт. Для производства такого количества тепловой энергии необходимо сжечь в топках котлов 6353304 м³ природного газа.

Стоимость газа для предприятия в настоящее время составляет значение ~ 2500 грн. за $1000~{\rm M}^3$ природного газа, и, следовательно, за потребляемый, указанными объектами в течение года газ, предприятие платит $15883259~{\rm грh}$.

Также предприятие несёт затраты на охлаждение потоков до их целевой температуры, для этого используется охлаждающая вода. Потребление охлаждающей воды составляет 16,88 килограмма воды в секунду, что эквивалентно общей мощности, равной ~ 5033 кВт.

Стоимость охлаждающей воды составляет 10% от стоимости энергии на нагревание, следовательно, предприятие в год тратит 1081592 грн.

Обследование технологических процессов на предприятии позволило определить четырнадцать технологических потоков, которые могут быть включены в теплоэнергетическую интеграцию, свойства которых собраны в табл. 2.

А сейчас перейдем к рассмотрению потоковых данных, экстрагированных из технологических процессов предприятия, и будем их анализировать с помощью методов интеграции процессов.

Заметим, что во время обследования теплоэнергетической системы технологических процессов нагрев потоков осуществлялся только за счёт пара, а охлаждение соответственно за счёт охлаждающей воды. Сокра-

тить расход пара и воды можно, но для этого сначала необходимо провести проектирование теплообменных сетей и процессов на предприятии.

Таблица 2 Потоковые данные технологических потоков, использующиеся для определения энергосберегающего потенциала

№	Название потока	Тип	T _S ,	T _T ,	G,	ΔΗ,
потока	Пазвание потока	ТИП	°C	°C	т/ч	кВт
1	Суспензии на пептизации	гор	102	70	2,50	89
2	Отходящие газы прокалки	гор	450	120	22,98	2666
3	ТіО2 после прокалки	гор	900	50	2,53	516
4	Отходящие газы сушки	гор	200	120	8,68	262
	Пары пароструйных мельниц	гор	112	112	3,00	1853,3
5	Конденсат пароструйных мельниц	гор	112	78	3,00	119
6	Нагрев NaOH	хол	20	95	0,04	3,75
7	Нагрев ГДТ в А-1 (ругил)	хол	20	78	0,55	36
8	Нагрев ГДТ + NaOH в A-1 (рутил)	хол	78	105	0,60	18
9	Нагрев ГДТ в пептизаторах	хол	20	102	0,60	54
10	Отбелка	хол	30	90	13,75	644
11	Прокалка ТіО2 (нагрев пасты)	хол	30	100	6,78	370
12	Воздух на прокалку	хол	30	1100	17,44	5548
13	Сушка ТіО2 (нагрев пасты)	хол	30	100	5,03	275
14	Воздух на сушку	хол	30	560	5,82	917

Задачей проектирования является организация теплообмена горячих (которые необходимо охладить) и холодных (которые необходимо нагреть) потоков между собой, а также с внешними энергоносителями с целью минимизации приведенных годовых затрат предприятия, кроме того выбранный проект должен быть безопасным, управляемым и удовлетворять экологическим требованиям [2]. Также рассчитываются: оптимальные параметры процесса, капитальные вложения, срок окупаемости и ежегодная прибыль. На основании полученных результатов делается вывод, целесообразна ли реконструкция предприятия. Ведь если затраты

окажутся большими, ежегодная прибыль маленькой и срок окупаемости больше 15 лет, то никто не захочет вкладывать деньги в такой проект. Для начала определим, какое количество тепла можно забрать у горячих потоков и подвести к холодному потоку для его нагрева, иначе говоря, определим энергосберегающий потенциал.

Определение энергосберегающего потенциала. Используя технологические данные из таблицы 2, построим на энтальпийнотемпературной диаграмме горячую и холодную составные кривые выбранной системы технологических потоков без рекуперации процесса см. рис. 2.

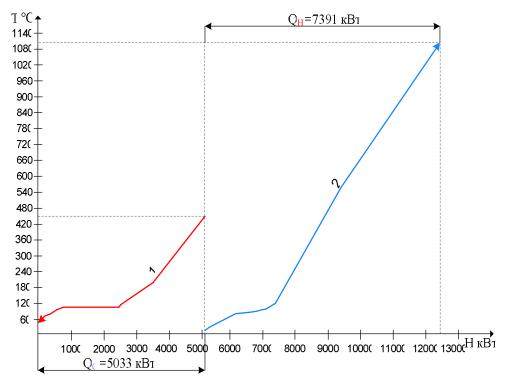


Рис. 2. Составные кривые процесса производства пигментной двуокиси титана без рекуперации процесса: 1 – составная кривая горячих потоков; 2 – составная кривая холодных потоков; Q_H и Q_C потребление мощности горячих и холодных угилит.

На рис.2 видно, для того чтобы нагреть исходный поток до целевой температуры нужно подвести к потоку тепловую энергию, равную \sim 7391кВт и соответственно для охлаждения горячих потоков отвести тепловую энергию, равную \sim 5033 кВт. Для этого предприятие каждый год тратит \sim 16964851 грн., из них \sim 15883259 грн. на горячие утилиты и \sim

1081592 грн. на холодные утилиты. Так как энергоносители с каждым годом дорожают и их количество на земле уменьшается, то появилась необходимость сокращать потребление энергоносителей. Достичь этого удалось благодаря пинч-интеграции. Составные кривые показывают значения тепловой мощности, которую возможно отвести от системы горячих потоков ~ 5033 кВт и мощности, которую необходимо подвести к холодным потокам ~ 7391 кВт для выполнения процессов рекуперации.

Для этого сдвигают составные кривые. Сдвигать составные кривые необходимо так, чтобы минимальная разность температур равнялась ΔT_{min} . Только при этой температуре достигается оптимальный компромисс между инвестициями и стоимостью энергии. По подобраному ΔT_{min} = 20 °C строим сдвинутые составные кривые см. рис. 3.

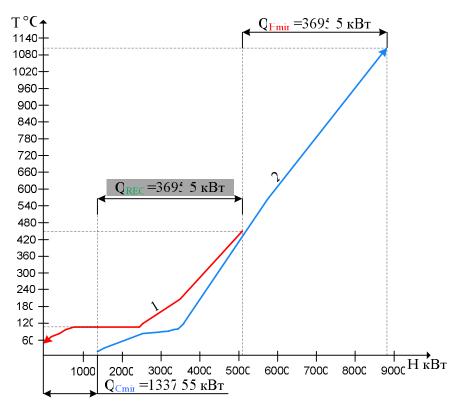


Рис. 3. Сдвинутые составные кривые процесса производства пигментной двуокиси титана с рекуперацией процесса: 1 – составная кривая горячих потоков; 2 – составная кривая холодных потоков; $Q_{H\min}$, $Q_{C\min}$, Q_{Rec} потребление мощности горячих, холодных утилит и мощность рекуперации;

Сдвинув холодный поток к горячему, и обеспечив разность температур в 20 °C (рис. 3) видим, что тепловой энергии рекуперируется ~

3695,5 кВт [4]. Правда не всю энергию удаётся рекуперировать, поэтому невозможно вообще отказаться от горячих и холодных утилит, можно лишь снизить объём их расхода. Так расход горячих утилит сократился с ~7391 кВт, до ~ 3695,5 кВт, а холодных с ~5033 кВт, до ~ 1337,55 кВт. Это существенное снижение затрат на пар и охлаждающую воду. Представим экономическое обоснование внедрения проекта.

Затраты предприятия на нагрев и охлаждение до внедрения проекта (без рекуперации процесса).

Сделаем расчёт стоимости подведенного тепла, на нагрев холодных потоков. Определим стоимость 1 кВт/год энергии, которая получается при сжигании природного газа — количество энергии которая выделяется при сжигании $1000 \,\mathrm{M}^3$ природного газа $-33.5 \, 10^9 \,\mathrm{Дж}$

Рассчитываем стоимость 1 кВт/год энергии см. в уравнении (1):

$$x = 2500 \cdot 3600 \cdot 8000 \cdot 10^3 / 33.5 \cdot 10^9 \tag{1}$$

где x – искомая стоимость 1 кВт/год; 8000 час. – количество рабочих часов в год; 2500 грн. – цена за 1000 м³ газа; 3600 сек – количество секунд в 1 часе, откуда х – 2149 грн.

Т.е. 1 кВт/год будет стоить 2149 грн. Стоимость годовой энергии, которая пойдёт на подогрев холодного потока см. в уравнении (2):

$$S_{\Gamma I} = Q_H \cdot x, \tag{2}$$

где Q_H – тепловая мощность для нагрева холодного потока; $S_{\Gamma I}$ – стоимость годовой энергии для нагрева холодного потока.

$$S_{\Gamma I} = 7391 \cdot 2149 = 15883259$$
 грн.

Принято считать, что стоимость энергии для охлаждения стоит 10 % от стоимости энергии на нагрев см. в уравнении (3):

$$S_{XI} = Q_C \cdot x \cdot 0, I, \tag{3}$$

где Q_C – тепловая мощность для охлаждения горячих потоков; S_{XI} – стоимость годовой энергии для охлаждения горячих потоков.

$$S_{XI} = 5033 \cdot 2149 \cdot 0, I = 1081592$$
 грн.

Общие годовые затраты на энергоносители см. в уравнении (4):

$$S_{\Delta I} = S_{\Gamma I} + S_{XI},\tag{4}$$

где $S_{\Delta I}$ — общие годовые затраты на энергоносители до внедрения проекта.

$$S_{\Delta I} = 15883259 + 1081592 = 16964851$$
 грн.

После разработки и внедрения пинч технологий, были получены новые значения горячих и холодних утилит, ~ 29,258 кВт и ~ 33,8 кВт.

Сделаем перерасчёт стоимости энергии см. в уравнении (2) и (3):

$$S_{\Gamma 2} = 3695, 5 \cdot 2149 = 7941630$$
 грн, $S_{X2} = 1337, 55 \cdot 2149 \cdot 0, 1 = 287440$ грн.

Общие годовые затраты на энергоносители см. в уравнении (4):

$$S_{\Delta 2} = 7941630 + 287440 = 8229070$$
 грн.

Рассчитаем сумму экономии за год см. в уравнении (5):

$$\Delta S = S_{\Delta I} - S_{\Delta 2},$$
 (5)
 $\Delta S = 16964851 - 8229070 = 8735781 \ \text{грн}.$

Принимая во внимание указанную выше стоимость горячих и холодных утилит, непосредственное проведение процесса производства пигментной двуокиси титана, в случае внедрения, обойдётся предприятию в 8229070 грн., вместо 16964851 грн до реконструкции. Стоимость горячих утилит для проведения процесса уменьшится на ~ 50%, а холодных на ~ 73%. Совершенно понятно, что за все необходимо платить, и платой в нашем случае будет установка дополнительной теплообменной поверхности, т.е. капитальные затраты. Составные кривые содержат достаточно информации для определения этих затрат еще до разработки самого проекта реконструкции теплоэнергетической системы.

Нам известны начальные и конечные температуры технологических потоков, их тепловые нагрузки и, как правило, известны характерные ко-

эффициенты теплоотдачи для каждого из потоков в теплообменном оборудовании. Применяя аппарат составных кривых, мы можем достаточно точно оценить необходимую площадь поверхности теплообмена для проектируемого или реконструируемого процесса. В пинч-анализе также существуют методы определения минимального количества теплообменных аппаратов и их секций [1]. После определения количества теплообменных секций и их поверхности можно оценить стоимость их установки, а значит и общие капитальные затраты [1]. Стоимость теплообменного оборудования выбираем в соответствии с ценами поставщиков.

Значению ΔT_{\min} можно сопоставить в соответствии приведенную капитальную стоимость и годовую стоимость энергии. При увеличении ΔT_{\min} уменьшается мощность рекуперации, увеличиваются среднелогарифмические разности температур, что ведет к уменьшению площади поверхности теплообмена и в итоге к уменьшению капитальной приведенной стоимости. В то же время стоимость потребленной энергии будет расти с увеличением ΔT_{\min} . Общая приведенная стоимость проекта теплообменной системы процесса формируется этими двумя конкурирующими величинами и в результате является немонотонной функцией ΔT_{\min} , и ΔT_{\min} определяется при минимальном значении приведенной стоимости проекта [2].

Заключение. Экономический потенциал энергосбережения, полученный вследствие интеграции процессов проектируемого предприятия, равен ~ 8735781 грн. Если рассматривать экономию с точки зрения энергии, т.е. горячих и холодных утилит, то расход горячих сократился на ~ 50%, а холодных на ~ 73%. Что немаловажно во времена увеличения цен на энергоносители.

Список литературы: 1. Основы интеграции тепловых процессов / [Смит Р., Товажнянский \mathcal{I} ., Клемеш $\check{\mathcal{U}}$. u ∂p .]. – Х.: ХГПУ. 2000. – 457 с. 2. Основы теории ресурсосберегающих интегрированных химико-технологических систем / [Мешалкин В.П., Товажнянский \mathcal{I} . \mathcal{I} ., Капустенко \mathcal{I} . \mathcal{I} .]. – Х.: НТУ «ХПИ», 2006. – 412 с. 3. Двуокись титана / [Хазин \mathcal{I} . \mathcal{I} .]. – \mathcal{I} .: Химия, 1970. – 176 с. 4. Построение составных кривых технологических процессов для определения энергетической эффективности предприятий: сб. науч. работ по материалам межд. научнотехн. конф. «Информационные технологии: наука, техника, технология, образование, здоровье», тісгоСАD'96. Ч. 1. / [Товажнянский \mathcal{I} . \mathcal{I} ., Капустенко \mathcal{I} . \mathcal{I} ., Ульев \mathcal{I} . \mathcal{I} . и ∂p .]. – Х.: Вестник – 1996. – 179 с.