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A NEW NUMERICAL METHOD FOR DETERMINATION OF  
EFFECTIVE ELASTIC CONSTANTS IN A COMPOSITE WITH 
CROSS-PLY FIBERS 
 

In this paper a composite material with similar cross-ply fibers is considered. Assuming orthotropic 
structure, theory of elasticity is used for investigating the stress concentration. The effective characteris-
tics of this composite are studied numerically by using ANSYS software. In this research a volume 
element of fibers in square array in the coordinate x, y, z and the generalized stress state is considered. 
In order to investigate the numerical finite element modeling, the modeling of a quarter unit cell is 
considered. For determining the elasticity coefficients, stress analysis is performed for considered vol-
ume with noting to boundary conditions. Effective elasticity and mechanical properties of composite 
which polymer epoxy is considered as its matrix, are determined theoretically and also by the proposed 
method in this paper with finite element method. Numerical experiments modeled four cases of uniaxial 
tension in the directions x, z and shear in the planes xy, yz. Finally, the variations of mechanical proper-
ties with respect to fiber-volume fraction are studied. Numerical results are compared with approximate 
estimates method proposed.  

Keywords: composite, cross-ply fibers, effective elastic constants, orthotropic. 
 
1 Introduction 
Composite materials which consist of two or more constituent materials are 

commonly used in advanced structural applications, e.g. in the marine and aero-
space industry. This is because of appropriate mechanical properties such as high 
specific strength and stiffness, low density and high resistance to corrosion. How-
ever, the limited understanding of the composite material behavior requires more 
research. This is further complicated by the fact that these materials behavior is 
dependent on lay-up, loading direction, specimen size and environmental effects 
such as temperature and moisture.  

Research on determination of effective elastic constants for anisotropic mate-
rials is very important in composite structures. 

Cross-ply laminate fiber reinforced resin matrix composites are used in some 
structural applications, due to their various reasons especially to their excellent 
mechanical behavior in terms of their specific stiffness in the direction of the fi-
bers. The prediction of the mechanical properties of cross-ply composites has been 
the main objective of many researchers. The well-known models that have been 
proposed and used to evaluate the properties of cross-ply laminate composites are 
Voigt, 1989 and Reuss, 1829 models. The Voigt model is also known as the rule of 
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mixture model or the iso-strain model, while the Reuss model is also known as the 
inverse of mixture model or the iso-strain model. Semi empirical models have 
emerged to correct the rule of mixture model where correcting factors are intro-
duced. Under this category, it is noticed three important models: the modified rule 
of mixture, the Halpin-Tsai model (Halpin et al, 1976) and Chamis model (Chamis, 
1989). The Halpin-Tsai model emerged as a semi-empirical model that tends to 
correct the transverse Young’s modulus and longitudinal shear modulus. The 
Chamis micromechanical model is the most used and trusted model which give a 
formulation for all five independent elastic properties. Hashin and Rosen (Hashin 
et al., 1964) initially proposed a composite cylinder assemblage model to evaluate 
the elastic properties of cross-ply laminate composites. Christensen, 1990 proposed 
a generalized self-consistent model in order to better evaluate the transversal shear 
modulus. Also the Mori-Tanaka model (Mori et al., 1990) is a famous model which 
is widely used for modeling different kinds of composite materials. This is an in-
clusion model where fibers are simulated by inclusions embedded in a homogene-
ous medium. The self-consistent model has been proposed by Hill, 1965 and Budi-
ansky, 1965 to predict the elastic properties of composite materials reinforced by iso-
tropic spherical particulates. Later the model was presented and used to predict the elas-
tic properties of short fibers composites (Chou et al., 1980). Recently, a new microme-
chanical model has been proposed by Huang, 2001. The model is developed to predict 
the stiffness and the strength of cross-ply laminate composites. 

In this paper a composite with cross-ply fibers is considered. Assuming 
orthotropic structure and using ANSYS software, effective characteristics of this 
composite are studied. Numerical studies are performed for some stress states in a 
representative cell for determination the effective elastic properties of cross-ply 
laminate reinforced composite. 

 
2 Computational procedure 
2.1 Definition and elasticity effective parameters in orthotropic composite  
This study considers a composite material with cross-ply fibers, as shown in 

Fig. 1. As it is shown, cross-ply fibers are parallel to «x» and  «y» directions. 
Theory of elasticity can be used for investigating the stress concentration of 

composite materials with cross-ply laminate fibers. The generalized Hook's law 
relating strains to stresses can be written as follows: 

ij ijkl kla⎡ ⎤ε = σ⎣ ⎦ ,   (i,j = 1,2,3),                                       (1) 

where [aijkl] is the compliance matrix and ijε  and ijσ  are the strain and stress 
components, respectively. Proof of the form of the stress-strain relations for the 
various cases of material property symmetry is given by Hill, 1965. For example, if 
there are two orthogonal planes of material property symmetry for a material, the 
stress-strain relations in coordinates aligned with principal material directions are 
as follows and are said to define an orthotropic material. 

In this study, composites with cross-ply fibers and constant radius are investi-
gated as orthotropic materials. 
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Figure 1 – Schematic of composite with cross-ply fibers 

 
These materials with volume «V», stress and strain are described as follows: 

1
ij ij

V

dV
V

σ = σ∫       and    1
ij ij

V

dV
V

ε = ε∫ .                                 (2) 

In Cartesian coordinates, Hook’s law is as follows: 

11 12 13x x y zb b bσ = ε + ε + ε ; 

21 22 23y x y zb b bσ = ε + ε + ε ; 

31 32 33z x y zb b bσ = ε + ε + ε ; 

44xy xybτ = γ ;  55yz yzbτ = γ ;  66zx zxbτ = γ .                       (3) 
Where bij  s the coefficient of stiffness matrix composite material. The stiff-

ness matrix is symmetric so, bij = bji.  
Since the composite has the same elasticity properties in «y» and «z» direc-

tions: 
b11 = b22;   b13 = b23;   b55 = b66.                                          (4) 

 
2.2 Finite Element Modeling 
The numerical finite element modeling is widely used in predicting the me-

chanical properties of composites. In this paper for numerical analysis, a volume 
element of fibers in square array is considered which plane symmetric exists on all 
of its planes. In order to investigate the numerical finite element modeling, the 
modeling of a unit cell for a square array is considered using ANSYS software as 
shown in Fig. 2. 

For determining the components of the stiffness matrix (bij), stress analysis is 
performed for considered volume with noting to boundary conditions. In the pre-
sent procedure, normal strains are applied to two directions and shear strains are 
applied to two planes as follows.  

The first numerical testing is unidirectional tension in «x» direction. In this 
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condition, tensor of average values for strains is as follows: 
-310xε = ;   0yε = ;   0zε = ;   0xyγ = ;   0yzγ = ;   0xzγ = .     (5) 

 

         
а                                                       b 

Figure 2 – Model: a – volume element; b – «xy» plane 
 

Boundary conditions for this structural analysis are as follows: 
In plane x = 1:   τxy = τxz   and   ux = 10−3. 
Where ux is displacement in «x» direction.  
In this situation, there are symmetric conditions in other planes and the 

boundary conditions are as follows: 
( 0, , ) 0xu x y z= = ;     ( , 0, ) 0yu x y z= = ;     ( , 1, ) 0yu x y z= = ;    

( , , 0) 0zu x y z = = ;   ( , , 2) 0zu x y z = = , 
where  uy,  uz  are displacements  in «y»   and «z»  directions, respectively.  

For numerical analysis, finite element software ANSYS is used and 15439 
SOLID 95 elements with 20 nodes are utilized as shown in Fig. 3. 

Stress components are determined as: 
2 1

0 0

1
2x xdydzσ = σ∫ ∫ ;    

2 1

0 0

1
2y ydxdzσ = σ∫ ∫ ;    

1 1

0 0
z z dxdyσ = σ∫ ∫ .         (6) 

Therefore, according to equations 8, by the first numerical testing three coef-
ficients of elasticity can be determined as follows: 

11
x

x

b
σ

=
ε

;     21
y

x

b
σ

=
ε

;     31
z

x

b
σ

=
ε

.                                 (7) 

Numerical analysis of volume element causes to study about stress-strain and 
stress concentration. In this analysis polymer epoxy is considered as matrix and its 
mechanical properties are as follows: 

Em = 4200 MPa;    Gm = 1500 MPa;      νm = 0,4. 
Mechanical properties of fibers are as follows: 
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Ea = 74800 MPa;    Ga = 31000 MPa;    νa = 0,2 [3,6]. 
For composite with fibers in constant radius as 0 < r < 1, fiber-volume frac-

tion is calculated as follows for square array: 
21

4
rξ = π .                                                         (8) 

 

 
Figure 3 – Volume element in mesh formed 

 
Effective elasticity properties for ξ = 0,488 is determined by Numerical 

Method. In Fig. 4 the result of the first condition is shown. 
The second numerical testing is unidirectional tension in «z» direction. In this 

condition, tensor of average values for strains is as follows: 

0xε = ;   0yε = ;   
-310

2zε = ;   0xyγ = ;    0yzγ = ;    0xzγ = .     (9) 

Boundary conditions for this structural analysis are as follows: 
In plane z = 2:   uz = 10−3;   τxz = τzy. 
In this situation, there are symmetric conditions in other planes and the 

boundary conditions are as follows: 
( , , 0) 0zu x y z = = ;    ( 0, , ) 0xu x y z= = ;    ( 1, , ) 0xu x y z= = ; 

( , 0, ) 0yu x y z= = ;    ( , 1, ) 0yu x y z= = . 
In this situation, the following equation is also obtained: 

1 1

0 0
z zdxdyσ = σ∫ ∫ .                                                  (10) 

Therefore, according to equations 8, by the second numerical testing one of 
the coefficients of elasticity can be determined as follows: 

33 3zb = σ ε .                                                   (11) 
The third numerical testing is shearing in «xy» plane. In this condition, tensor 
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of average values for strains is as follows: 
0xε = ;   0yε = ;   0zε = ;   -310xyγ = ;   0yzγ = ;    0xzγ = .     (12) 

 

      
a                                                                       b 

      
c                                                                       d 

Figure 4 – Results: a – displacement in «x» direction when ux = 10−3; 
b, c and d – stress distribution of normal stresses σx, σy,  σz  

 
Boundary conditions for this structural analysis are as follows: 
In plane  x = 1:   uy = 10−3;   σx = τxz = 0   and   uy = 10−3. 
Where uy is displacement of plane «x = 1» in «y» direction.  
In plane «x = 1» the displacement in all of the directions are zero and there 

are symmetric conditions in planes «x = 1», «z = 0» and «z = 2». The shear stress 
component in «xy» plane is as follows: 
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2 1

0 0

1
2xy xydydzτ = τ∫ ∫ .                                              (13)  

Therefore, according to equations 8, by the third numerical testing another 
coefficient of elasticity can be determined as follows: 

44 xy xyb = τ γ .                                                 (14) 
The fourth numerical testing is shearing in «yz» plane. In this condition, ten-

sor of average values for strains is as follows: 
0xε = ;   0yε = ;   0zε = ;   0xyγ = ;   -310 2yzγ = ;   0xzγ = .    (15) 

Boundary conditions for this structural analysis are as follows: 
In plane z = 2:  σz = τzx = 0  and  uy = 10−3. 
Where  uy = 10−3  is displacement of plane «z = 2» in «y» direction.  
In plane «z = 0» the displacement in all of the directions are zero and there 

are symmetric conditions in planes «x = 0»,  «x = 1» and «z = 2».  The stress com-
ponent in «yz» plane is as follows: 

1 1

0 0
yz yzdxdyτ = τ∫ ∫ .                                                (16) 

Therefore, according to equations 8, by the fourth numerical testing the last 
coefficient of elasticity can be determined as follows: 

55 zy zyb = τ γ .                                                  (17) 
For solving the problem, Hook’s law is used directly: 

[ ]Aε = ⋅ σ .                                                    (18) 
where A is the compliance matrix: [A] = [B]−1. 

Considering matrix A, elasticity coefficient such as poison ratio and shear 
modulus can be obtained as follows: 

11
1

x

a
E

= ;    22
1

y

a
E

= ;    33
1

z

a
E

= ;    12
yx xy

y x

a
E E
ν ν

= − = − ;   13
zx xz

z x

a
E E
ν ν

= − = − ; 

23
zy yz

z y

a
E E
ν ν

= − = − ;    44xyG b= ;    55yzG b= ;     66zxG b= .             (19) 

Complex variable functions are used for solving the plane stress problems 
[13]. In this procedure, the elasticity coefficients of composite structures are de-
pendent to the material properties of matrix and fibers and also to the situation of 
the fibers in the matrix. Vanin, 1985 determined the properties of composites with 
unidirectional fibers by complex functions. These coefficients are as follows: 

0 8 (1 )( )
(1 )

2 (1 )( 1) /
m b m

x b m
m b m b

G
E E E

G G
ξ − ξ υ − υ

= ξ + − ξ +
− ξ + χ ξ + − ξ χ −

; 

2

0

( ) 2(1 )( 1) ( 1)( 1 2 ) /1 1
8 2 (1 )( 1) /

yx m b m m b

x m m b m by

G G
E G G GE

υ ⎡ −ξ χ − + χ − χ − + ξ
= + +⎢ −ξ+χ ξ+ −ξ χ −⎣
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(1 ) (1 ) /
2 ;

(1 ) /
m m m b

m m b

G G
G G

⎤χ −ξ + +ξχ
+ ⎥χ +ξ+ −ξ ⎦  

0 1 (1 ) /
1 (1 ) /

m b
xy m

m b

G G
G G

G G
− ξ + − ξ

=
− ξ + + ξ

;     0 (1 ) (1 ) /
(1 ) /

m b
yz m

m b

G G
G G

G G
− ξ χ + + χξ

=
χ + ξ + − ξ

; 

0 ( 1)( )
2 (1- )( 1) /

m m b
yx m

m b m bG G
χ + υ − υ ξ

υ = υ −
− ξ + χ ξ + ξ χ −

,                   (20) 

0
0 0

0

y
xy yx

x

E

E
υ = υ ;    

0
0 0

0

z
zy yz

y

E

E
υ = υ ;     

0
0 0

0

z
zx xz

x

E

E
υ = υ .         (21) 

where 3 - 4i iχ = υ , (i = m,a) and ξ – fiber-volume fraction for a unidirectional fi-
bers composite.  

In this study fibers are parallel and perpendicular to «x» direction. So, for an 
orthotropic material: 

0 0
z yE E= ;   0 0

xy zxG G= ;   0 0
zx yxυ = υ ;   0 0

yz zyυ = υ ;   0 0
xz xyυ = υ . 

In the above equations, 0
xE , 0

yE , 0
zE  – Young's moduli in the x-, y- and 

z-directions, 0
ijG  – Shear modulus in the  i-j plane and 0

ijυ  – Poisson's ratio in 
the i-j plane (i,j = x,y,z) are the mean composite material modulus for unidirec-
tional fibers material and Em, Gm, vm  and  Eb, Gb, vb  are the matrix and fiber’s co-
efficients, respectively. 

According to Vanin’s equations, Alfootov determined the mechanical proper-
ties of cross-ply laminate reinforced composites with perpendicular fibers by com-
plex functions. Considering a two layer cross-ply laminate of equal properties with 
fibers parallel to «x» and «y» directions he obtained the mechanical properties of 
one layer and then the results were extended to multilayered plates. In this research 
multilayered plates are assumed with unit length and width. 

The stress-strain relations for a plate with similar unidirectional fibers under 
plane stress are as follows: 

{ } { }0
ij ijB⎡ ⎤σ = ε⎣ ⎦ ,     (i,j = 1,2).     

where, [B0] is the stiffness matrix of plate with similar unidirectional fibers. The 
above equation can be written as: 

0 0
11 1111 12

0 0
22 21 22 22

0
4412 12

0
0

0 0

b b
b b

b

⎧ σ ⎫ ⎧ ε ⎫⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢ ⎥σ = ε⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥σ ε⎣ ⎦⎩ ⎭ ⎩ ⎭

                                 (22) 

in laminates with multiple orthogonal layers and perpendicular fibers, medium 
thickness plates is considered. In this case the directions of the principal axes are 
assumed to coincide to «x» and «y» axes and all the layers are made of the same 
stiffness characters. 
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Stiffness matrix of this material describes the orthotropic properties of multi-
layered plates with orthogonal fibers. So, the coefficients of elasticity are as fol-
lows: 

( )0 0
11 11 22

1
2

b b b= + ;    ( )0 0
22 22 11

1
2

b b b= + ;     0
12 12b b= ;    0

44 44b b= .            (23) 

Effective elasticity properties for ξ = 0,488 is determined by theory of com-
plex functions and numerical procedure proposed in this research. Table 1 shows 
theoretical and numerical effective elastic constants. Numerical values are calcu-
lated by ANSYS. 

 
3 Results and discussion 
In this section, variation of 1 x mE E E= , 2 y mE E E=  and 

xy mG G G=  versus different values of ξ are obtained for cross-ply laminate 
glass fibers in a square pattern. Mechanical properties of composite are determined 
theoretically (method Vanin-Alfootov) and also by the proposed method in this 
paper (numerical method) with finite element method software (ANSYS). It is ob-
vious that x yE E= , so E1 = E2. In addition, for the integration of theoretical 
and numerical methods to solve the problem, it is assumed that the number and 
thickness of layer 1 and 2 are equal. 

 
Table 1 – Theory and numerical results of effective elasticity properties for ξ = 0,488 

Elasticity properties Numerical Method 
 by ANSYS       

Theoretical Method by  
Vanin Formula 

xE  30400     29470 

yE  30400         29470 
Modulus of 

elasticity 
(MPa) 

xE  16100    14870 

xyG   26500         5293 

xzG   3700       3278 
Modulus of 

shear 
(MPa) 

yzG   3700           3278 

xyυ   0,02            0,02 Poisson’s coef-
ficient 

xzυ   0,31            0,286 

 
Fig. 5 shows the variation of  E1 versus different values of ξ for cross-ply 

composite glass fibers in a square pattern. 
xE  is modulus of elasticity of com-

posite in fibers direction and Em  is modulus of elasticity of matrix. In this figure, 
the curve 1 is obtained from theoretical formulation and the curve 2 is obtained by 
the method of this paper. As it can be seen, the behaviors of curves are nonlinear. 
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Fig. 6 shows that in small value of ξ, the value of  E1  is near to 1. Also for the 
maximum value of ξ (ξ = 0,78), the value of E1 is near to the modulus of elasticity 
of fibers Eb/Em, as it is predicted.   

 

 
Figure 5 – The variation of  E1  and  E2 (E1 = E2) versus different values of ξ for  

cross-ply glass fibers in a square pattern  
 

 
Figure 6 – The variation of  G versus different values of  ξ for cross-ply glass  

fibers in a square pattern 
 
Fig. 6 shows the variation of  G versus different values of  ξ for cross-ply 
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composite glass fibers in a square pattern.  xyG  is shear modulus of composite in 
xy plane and  Gm is the shear modulus of matrix. In this figure, the curve 1 is ob-
tained from theoretical formulation and the curve 2 is obtained by the method of 
this paper. As it can be seen, the behaviors of curves are nonlinear. Fig. 6 shows 
that in small value of  ξ  , the value of  G  is near to 1. Also for the maximum value 
of ξ (ξ = 0,78), G is near to a value that is smaller than the shear modulus of fibers  
Gb/Gm. This result is coincident to curves obtained by Vanin- Alfootov. 

 
Coclusion 
In this research assuming orthotropic structure for a composite material with 

similar cross-ply fibers, the effective elasticity and mechanical properties are de-
termined theoretically and also by finite element method.  A volume element of 
fibers in square array is considered which plane symmetric exists on all of its 
planes. In order to investigate the numerical finite element modeling, the modeling 
of a quarter unit cell is considered. For determining the elasticity coefficients, 
stress analysis is performed for considered volume with noting to boundary condi-
tions. In the present procedure, normal strains are applied to two directions and 
shear strains are applied to one plane. So, the effective elasticity and mechanical 
properties of composite which polymer epoxy is considered as its matrix, are de-
termined theoretically and also by the proposed method in this paper. 

The variations of mechanical properties with respect to fiber-volume fraction 
ξ are studied and the following results are obtained: 

1. In direction of fibers, the behaviors of ratio  E1 = E2   due to  ξ are nonlin-
ear. The results show that in small value of  ξ  , the value of E1  is near to 1. Also 
for the maximum value of ξ, the value of E1 and  E2 is near to the modulus of elas-
ticity of fibers Eb/Em, as it is predicted.  

2. The behaviors of  ratio  G   are nonlinear. The results show that in small 
value of  ξ, the value of  G  is near to 1. Also for the maximum value of ξ, the 
value of  G  is near to a value that is smaller than the shear modulus of fibers  
Gb/Gm. This result is coincident to curves obtained by Vanin. 
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