УДК 621.318

О.Н. МИРОШНИЧЕНКО, канд. техн. наук, доц. ВНУ им.В.Даля, Луганськ А.П. ЧУРНОСОВ, аспирант, ВНУ им.В. Даля, Луганськ В.В. ЯКОВЕНКО, д-р. техн. наук., проф. ВНУ им. В. Даля, Луганськ

МАГНИТНЫЙ НЕРАЗРУШАЮШИЙ КОНТРОЛЬ ВИБРОУПРОЧНЕННОГО СЛОЯ ПОВЕРХНОСТИ СТАЛЬНЫХ ИЗЛЕЛИЙ

В статті розглянутий новий метод контролю верхнього зміцнюваного шару металу в процесі віброзміцнення. Дано теоретичне обгрунтування методу, його приладову реалізацію і результати експерименту. Товшину і мікротвердість віброзмішненого шару металу можна розглядати як лінійні залежності свідчень імпульсного градієнтометра і електромагнітного двочастотного приладу.

In the article a new method of control of the upper layer of hardened metal in the process of vibrationhardening is examined. A theoretical justification of the method, its instrumentation implementation and results of experiments. The thickness and microhardness of vibro-hardened laver of metal can be regarded as linear dependence of gradiometer readings of pulse and dual-frequency electromagnetic device.

Введение. Виброударное упрочнение является одним из наиболее распространенных видов виброобработки деталей. Виброупрочнение верхнего слоя металла повышает износостойкость деталей и гладкость их поверхностей [1]. Процесс виброупрочнения длится обычно 90-120 минут. Причем при достижении максимального значения микротвердости поверхностного слоя происходит разрушение верхнего упрочненного слоя. Таким образом, существует оптимальные по критерию максимализма твердости и толщины упрочняемого слоя время виброупрочнения, по истечению которого технологический процесс виброобработки должен прекращаться.

Постановка задачи. В настоящее время нет приборов экспресс-контроля качества упрочняемого слоя металла, поэтому устанавливается среднее время виброупрочнения, что приводит к отклонению микротвердости металла от максимального и к ухудшению качества виброупрочняемой поверхности. Поэтому создание прибора контроля мониторинга качества виброупрочняемого поверхностного слоя металла является актуальной научно-технической задачей.

Существуют импульсные градиентометрические приборы контроля твердости поверхностного слоя детали [2] и методы многочастотного электромагнитного контроля толщины слоя с повышенной твердостью [3]. Эти два метода предлагается объединить в один путем линейной комбинации результатов двух методов, что позволит проводить экспресс-контроль качества упрочняемого слоя непосредственно во время виброобработки.

Целью работы является создание и теоретическое обоснование метода и его приборной реализации контроля микротвердости виброупрочняемого поверхностного слоя металла летали и определение его толшины.

Основная часть.

1. Принцип действия прибора

Блок-схема прибора показана на рис.1. На рис.2. приведена конструкция измерительного преобразователя. Измерение параметров упрочненного слоя металла производится в два этапа. На первом этапе измерительный преобразователь торцом катушки ставится на контролируемую деталь и в обмотку катушки 1 подается импульс тока, который создает у поверхности металла напряженность поля 2·10⁵ – 6·10⁵ А/м. длительность импульса $2 \cdot 10^3$ с. Импульсов тока может быть несколько.

Рис.1. Блок-схема прибора измерения микротвердости и толщины виброупрочняемого слоя металла.

1-измерительный преобразователь; 2- устройство обработки сигнала градиентометра; 3-устройство обработки двухчастотного сигнала; 4-блок оценки информации; 5-блок генераторов зондирующих сигналов.

Рис.2. Измерительный преобразователь 184

Намагниченный под катушкой локальный участок детали создает поле рассеяния, градиент которого измеряется феррозондом 3. Величина градиента поля зависит от амплитуды, длительности и количества намагничивающих импульсов, а также от величины коэрцитивной силы ферромагнитного материала детали и от толщины виброупрочненного слоя.

Имеются аналитические зависимости для расчета величины градиента поля [2], однако они не включают зависимость градиента от размеров катушки и не содержат сведений о том, как рассчитываются некоторые величины, входящие в расчетную формулу. На втором этапе измерения в катушку 1 подается ток низкой частоты 10 Гц, а в эту же катушку поступает ток высокой частоты 400 Гц. Амплитуда тока низкой частоты 4 А, амплитуда тока высокой частоты 0,05 А. Током высокой частоты запитывается катушка 2. Двухчастотное электромагнитное поле в нелинейной среде имеет гармоники. Амплитуда второй гармоники высокочастотной составляющей содержит информацию о толщине и микротвердости упрочняемого поверхностного тока.

Выходные сигналы с устройств обработки сигналов 2,3 подаются на блок оценки информации. Оценка информации происходит путем выполнения следующих действий

$$A_T = a_0 + a_1 U_\Gamma + a_2 U_C;$$

$$A_C = b_1 U_\Gamma + b_2 U_C;$$
(1)

где A_T -величина твердости металла; A_C -толщина упрочненного слоя; a_0, a_1, a_2, b_1, b_2 - коэффициенты, которые определяются расчетным путем; U_T -напряжение градиентометра, U_C -напряжение второй гармоники электромагнитного бичастотного поля.

2. Расчет поля вектора намагниченности в детали.

Пусть катушка располагается над ферромагнитным полупространством с магнитной проницаемостью μ . Рассчитывается напряженность магнитного поля, создаваемая катушкой, которая представляется бесконечно тонкими слоями тока (рис.3) по методу, изложенному в [4]. Согласно этому методу обмотка катушки разбивается на *m* слоев, причем *m* выбирается из условия

$$m \ge \frac{10(\rho_2 - \rho_1)}{(\rho_2 + \rho_1)},\tag{2}$$

где ρ_2 и ρ_1 соответственно внутренний и внешний радиус катушки.

Рис.3. Геометрическая модель катушки.

Напряженность магнитного поля, создаваемая обмоткой намагничивания, определяется следующим выражением

$$\overline{H}(M) = \sum_{k=1}^{m} \delta_k \overline{\alpha}_k(M), \tag{3}$$

где $\delta_k = \frac{\delta'_k \cdot 2}{\mu + 1}, \ \delta'_k = \frac{Iw}{m|(z_2 - z_1)'}; \ \overline{\alpha}_k(M)$ -функция, определяемая

взаиморасположением тонкой *k* -ой обмотки и точки *M*.

здесь

$$C_{k} = \frac{1}{2\pi} \int_{0}^{\pi} r_{k} \left(\frac{1}{\sqrt{(z_{M} - z_{2})^{2} + b_{k}^{2}}} - \frac{1}{\sqrt{((z_{M} - z_{1})^{2} + b_{k}^{2})}} \right) \cos \alpha d\alpha, \tag{4}$$

 $\overline{\alpha}_{k} = \left(\overline{1}_{k}C_{k} + \overline{1}_{n}D_{k}\right)$

$$D_{k} = \frac{1}{2\pi} \int_{0}^{\pi} \frac{r_{k} - \rho_{M} \cos \alpha}{b_{k}} \left(\frac{z_{2} - z_{M}}{\sqrt{(z_{M} - z_{2})^{2} + b_{k}^{2}}} - \frac{z_{M} - z_{1}}{\sqrt{((z_{M} - z_{1})^{2} + b_{k}^{2})}} \right) d\alpha,$$
(5)
$$b_{k} = \sqrt{r_{k}^{2} + \rho_{M}^{2} - 2r_{k}^{2}\rho_{M} \cos \alpha},$$

где r_k - радиус слоя тока; ρ_M, z_M - координаты точки наблюдения; $z_1, z_2 - z$ -координаты концов катушки (см.рис.2)

Составляющие и модуль напряженности магнитного поля, создаваемого катушкой, будут равны

$$H_{\rho} = \sum_{k=1}^{m} \delta_k C_k;$$
 $H_z = \sum_{k=1}^{m} \delta_k D_k,$ $H = \sqrt{H_{\rho}^2 + H_z^2}$

Рассчитанное значение модуля напряженности магнитного поля дает возможность определить значение модуля намагниченности, соответствующее этой напряженности по следующей формуле [5]

$$M = \chi_{H} \frac{H_{cs}H}{H_{cs}^{2} + H^{2}} + \frac{M_{s}}{\pi} \frac{H^{2}}{H_{cs}^{2} + kH^{2}} \left(arctg \frac{H_{cs} + H}{H_{0}} - arctg \frac{H_{cs} - H}{H_{0}} \right),$$

$$arctg \left(2 \frac{H_{cs}}{H_{0}} \right)$$

$$H_0 = \frac{H_{cs}}{tg\left(\frac{M_{rs}}{M_s}\frac{\pi}{2}\right)}; \qquad k = \frac{M_s}{\pi} \frac{drclg\left(\frac{2}{H_0}\right)}{M_c - \frac{\chi_n H_{cs}}{2}} - 1; \tag{6}$$

 $\chi_{\rm H}$ -начальная восприимчивость; M_s -намагниченность насыщения; $M_{\rm rs}$ - остаточная намагниченность по предельной петле гистерезиса; $H_{\rm cs}$ - коэрцитивная сила по предельной петле гистерезиса; M_c -величина намагниченности, соответствующая точке на основной кривой намагниченности при напряженности поля равной $H_{\rm cs}$.

Область ферромагнитного материала, лежащая под катушкой , разбивается на элементарные объемы, как это показано для одного сектора на рис.4.

Рис.4. Разбиение локальной области, лежащей под катушкой, на элементарные объемы.

Элементарный объем (ЭО) равен

где

$$\Delta V_j = \pi \left(R_{\nu+1,j}^2 - R_{\nu,j}^2 \right) \Delta z_j, \quad \nu = \overline{0 - T}, \ j = \overline{1 - N}$$
(7)

здесь $R_{v,j}$ -радиус v-окружности j-го ЭО; T-количество окружностей, на которые разбивается область, лежащая под катушкой.

В каждом *j*-ом ЭО определяются по формуле (6) значения модуля вектора намагниченности. Рассчитываются составляющие вектора намагниченности

$$M_{\rho j} = M_j \frac{H_{\rho j}}{H_j}, \qquad M_{zj} = M_j \frac{H_{zj}}{H_j}, \tag{8}$$

где *M*_{*i*}-значение модуля вектора намагниченности в *j*-ом ЭО.

Рассчитывается составляющая вектора размагничивающего фактора для *j*-го ЭО по методу, изложенному в [9]

$$N_{\rho j} = \frac{H_{\rho \ p j}}{M_{\rho j}}; \qquad N_{zj} = \frac{H_{z \ p j}}{M_{z j}}, \tag{9}$$

где $H_{\rho pi}$, $H_{z pi}$ - напряженность размагничивающего поля.

Находятся значения составляющих вектора остаточной намагниченности в *j*-ом ЭО после отключения тока в обмотке катушки путем совместного решения системы уравнений

$$\begin{aligned} H_{\rho j} &= -N_{\rho j} M_{j}^{'}; & H_{z j} &= -N_{z j} M_{j}^{'}; \\ M_{j}^{'} &= M'(H); & M_{j}^{'} &= M'(H); \end{aligned}$$
 (10)

где

$$M'(H) = \frac{M_s}{\pi} \left(\arctan \frac{H_{cs} - H}{H_0} - \arctan \frac{H_{cs}}{H_0} \right) + \frac{2M_s}{\pi} \left[1 - \frac{1}{\pi} \left(\arctan \frac{H_{cs} - H}{H_0} - \arctan \frac{H_{cs}}{H_0} \right) \right] \cdot \arctan \frac{H_{cs} - H}{H_0},$$
(11)

зависимость намагниченности от напряженности на кривой возврата [5]. Таким образом, находятся составляющие вектора остаточной намагниченности в каждом j -ом ЭО.

Область намагниченного ферромагнитного материала ограничивается там, где напряженность магнитного поля, создаваемая катушкой, становится равной напряженности Релея.

Напряженность магнитного поля в сердечниках феррозонда определяется с помощью теоремы о взаимности [6], суть которого выражается в следующем соотношении

$$\Phi = \frac{\mu_0}{Iw} \int_V \overline{H}(p) \overline{M}(p) dV, \quad p \in V$$
(12)

здесь Φ -магнитный поток в сердечнике феррозонда наведенного полем намагниченной области; $\overline{H}(p)$ -вектор напряженности в области V, которая создается током в обмотке расположенной по всей длине сердечника феррозонда; Iw-магнитодвижущая сила обмотки, расположенной на сердечнике феррозонда; $\overline{M}(p)$ -вектор намагниченности в объеме V; Vобъем локальной намагниченной области.

Напряженность поля в сердечнике феррозонда равна

$$H_{\Phi} = \frac{\Phi}{\mu\mu_C S_{\Phi}},\tag{13}$$

где S_{ϕ} -площадь сечения сердечника феррозонда; $\mu_C = \frac{\mu m}{\mu + m - 1} \approx m$ -проницаемость формы сердечника феррозонда рассчитывается по формуле [8]

$$m = \frac{\lambda^2 \left[\frac{0.5\pi}{arctg0,795\chi}\chi + 1\right]}{0.48S_{\phi} + 0.003\lambda} \cdot \frac{1}{\left[1.6 - \frac{2.72}{\lambda}\ln 2\lambda - \frac{3.74}{\lambda} - 1.2\right]},$$
 (14)

здесь $\lambda = \frac{2b}{a\sqrt{\pi}}$; 2*b* -длина сердечника феррозонда; *a* -радиус сердечника

феррозонда.

Формула (13) переписывается так

$$H_{\Phi} = \frac{1}{Iw\mu_c S_{\Phi}} \int_{V} \overline{H}(p)\overline{M}(p)dV , \qquad (15)$$

ее в первом приближении можно заменить следующей формулой:

$$H_{\Phi} = \frac{1}{Iw\mu_C S_{\Phi}} \sum_{j=1}^{N} \overline{H}_j \overline{M}_j \Delta V_j$$
(16)

где ΔV_i -объем ЭО; *N* -количество ЭО.

Поскольку сердечник феррозонда имеет круглое сечение и расположен на оси катушки, магнитное поле имеет осевую симметрию, поэтому напряженность поля в сердечнике рассчитывается так

$$H_{\phi} = \frac{1}{Iw\mu_C S_{\phi}} \sum_{\nu=1}^{T} \sum_{f=1}^{F} \overline{H}_{\nu f} \overline{M}_{\nu f} \Delta V_{\nu f}$$
(17)

где f-номер слоя ферромагнитного материала толщиной Δz_{ϕ} ; F-количество слоев, на которые разбивается локальная намагниченная область; \overline{H}_{vf} , \overline{M}_{vf} -напряженность и остаточная намагниченность в v-кольце f-ого слоя.

Если сердечник феррозонда имеет прямоугольную форму сечения, то для расчета напряженности следует использовать формулу (16). Магнитное поле создаваемое сердечником с обмоткой можно аппроксимировать полем двух разноименных, но одинаковых по числовому значению зарядов. Напряженность этого поля равна

$$\overline{H} = \frac{Iwm}{8b} a^2 \frac{1}{R^2} \overline{1}_R$$

следовательно, в геометрических центрах колец слоев ферромагнитного материала составляющие вектора \overline{H} будут равны

Г

$$H_{\rho v f} = \frac{I w m a^2}{8b} \left[\frac{\frac{1}{2} (R_{v+1,f} - R_{vf}) (2v+1)}{\left(d + (2f+1) \frac{\Delta z}{2} \right)^2 + \left(\frac{1}{2} (R_{v+1,f} - R_{v,f}) (2v+1) \right)^2} - \frac{\frac{1}{2} (R_{v+1,f} - R_{v,f}) (2v+1)}{\left(d + 2b + (2f+1) \frac{\Delta z}{2} \right)^2 + \left(\frac{1}{2} (R_{v+1,f} - R_{v,f}) (2v+1) \right)^2} \right]$$
(18)

$$H_{zvf} = \frac{Iwma^2}{8b} \left[\frac{d + (2f+1)\frac{\Delta z}{2}}{\left(d + (2f+1)\frac{\Delta z}{2}\right)^2 + \left(\frac{1}{2}\left(R_{\nu+1,f} - R_{\nu,f}\right)(2\nu+1)\right)^2} - \frac{d + 2b + (2f+1)\frac{\Delta z}{2}}{\left(d + 2b + (2f+1)\frac{\Delta z}{2}\right)^2 + \left(\frac{1}{2}\left(R_{\nu+1,f} - R_{\nu,f}\right)(2\nu+1)\right)^2} \right]$$
(19)

Таким образом, напряженность магнитного поля, наведенного намагниченной локальной областью, может быть рассчитана по следующей формуле

$$H_{\Phi} = \frac{a^2}{8bS_{\Phi}} \left(\sum_{\nu=1}^{T} \sum_{f=1}^{F} \left[\frac{0.5\Delta R_{\nu,f} (2\nu+1)M'_{\rho\nu f}}{(d+(2f+1)0.5\Delta z)^2 + (0.5\Delta R_{\nu,f} (2\nu+1))^2} - \right] \right)$$
(20)

$$-\frac{0,5\Delta R_{\nu,f}(2\nu+1)M'_{\rho\nu f}}{(d+2b+(2f+1)0,5\Delta z)^2+(0,5\Delta R_{\nu,f}(2\nu+1))^2} + \frac{(d+(2f+1)0,5\Delta z)M'_{z\nu f}}{(d+(2f+1)0,5\Delta z)^2+(0,5\Delta R_{\nu,f}(2\nu+1))^2} - \frac{(d+2b+(2f+1)0,5\Delta z)M'_{z\nu f}}{((d+2b+(2f+1)0,5\Delta z))^2+(0,5\Delta R_{\nu,f}(2\nu+1))^2}\right]$$

здесь обозначено $\Delta R_{\nu,f} = R_{\nu+1,f} - R_{\nu,f}$

По такой же формуле рассчитывается напряженность магнитного поля в сердечнике второго полуэлемента феррозонда, только изменяется d на d' = d + 2b + c. Выходное напряжение феррозонда включенного по градиентометрической схеме рассчитывается по формуле

$$U_{2m} = k \left(H_{\phi 1} - H_{\phi 2} \right) = k \nabla H_{\phi} \tag{21}$$

где k-коэффициент передачи феррозонда по амплитуде второй гармоники; H_{ϕ_1}, H_{ϕ_2} -напряженность магнитного поля в первом и втором полуэлементах феррозонда.

3. Функция намагниченности при многочастотном перемагничивании поверхности контролируемой детали.

Перемагничивание поверхностного слоя происходит двумя полями [7]

$$H_{S_2} = H_{mS_2} \sin S_2 t; \quad H_\omega = H_{m\omega} \cos \omega t$$

для амплитуд H_{mS_2} и $H_{m\omega}$ и частот S_2 и ω справедливы соотношения

$$H_{mS_2} \ge H_{m\omega}; \quad \omega >> S_2; \quad H_{mS_2} \cdot S_2 \le H_{m\omega} \cdot \omega$$
(22)

Глубина проникновения в металл низкочастотного поля

$$a_{S_2} = \sqrt{\frac{2}{\mu_0 \mu \gamma S_2}},\tag{23}$$

где γ -проводимость ферромагнитного материала; μ -относительная магнитная проницаемость материала; $\mu_0 = 4\pi \cdot 10^{-7}$ Гн/м, много больше проникновение высокочастотного электромагнитного поля, которое равно [8]

$$a_{\omega} = \sqrt{\frac{2}{\mu_0 \mu \gamma \omega}} \ll a_{S_2} \tag{24}$$

Весь процесс взаимодействия ферромагнитного полупространства с двумя магнитными полями будет проходить в тонком (до 500 мкм) упрочняемом слое, соизмеримом с длиной волны высокочастотного поля в ферромагнетике. Напряженность низкочастотного поля по всей толщине упрочняемого слоя считается постоянной, влиянием высокочастотных вихревых токов пренебрегаем.

Зависимость намагниченности M(t) раскладывается в ряд Фурье [7,8] и определяются коэффициенты вторых гармоник. Это значение намагниченности соответствует величине напряженности поля в каждом ЭО рассчитываемого по формуле [3]. Напряженность магнитного поля наведенного намагниченным участком контролируемой детали определяется с помощью теоремы о взаимности [6].

4. Результаты численного эксперимента.

В численном эксперименте использовалась катушка длиной $z_2 - z_1 = 35$ мм, с внутренним и внешним радиусами $\rho_1 = 6$ мм, $\rho_2 = 12$ мм. Число витков w = 500. Считалось, что в катушку подается импульс тока амплитудой $3 \cdot 10^5$ А.

Значения градиента магнитного поля рассчитывались при различных величинах коэрцитивной силы материала и при различной толщине упрочняемого слоя. Результаты расчета представлены в таблице 1.

Таблица 1 Зависимость градиента магнитного поля от коэрцитивной силы и от толщины упрочняемого слоя

Сталь20						
Коэрцитивная сила, А/м	450	470	490	510	530	550
Градиент магнитного поля, А/м2 Толщина слоя 0,05 мм	$2,4 \cdot 10^4$	2,65 · 10 ⁴	2,78 · 10 ⁴	3,01·10 ⁴	3,21·10 ⁴	3,45 · 10 ⁴
Градиент магнитного поля, А/м2 Толщина слоя 0,15 мм	2,51·10 ⁴	2,72 · 10 ⁴	2,82 · 10 ⁴	3,14 · 10 ⁴	3,33 · 10 ⁴	3,56 · 10 ⁴
Градиент магнитного поля, А/м2 Толщина слоя 0,25 мм	$2,56 \cdot 10^4$	$2,75 \cdot 10^4$	2,86 · 10 ⁴	3,18 · 10 ⁴	3,38 · 10 ⁴	3,61·10 ⁴
Сталь 40Х Коэрцитивная сила, А/м	1200	1300	1400	1500	1600	1800
Градиент магнитного поля, А/м2 Толщина слоя 0,05 мм	6,6·10 ⁴	7,12 · 10 ⁴	7,6 · 10 ⁴	8,15 · 10 ⁴	8,67 · 10 ⁴	9,12 · 10 ⁴
Градиент магнитного поля, А/м2 Толщина слоя 0,15 мм	6,69 · 10 ⁴	$7,22 \cdot 10^4$	7,69 · 10 ⁴	8,23 · 10 ⁴	$8,74 \cdot 10^4$	$9,2 \cdot 10^4$
Градиент магнитного поля, А/м2 Толщина слоя 0,25 мм	6,75 · 10 ⁴	7,3·10 ⁴	7,73 · 10 ⁴	8,28 · 10 ⁴	8,8 · 10 ⁴	9,25 · 10 ⁴

Данные, приведенные в таблице 1, свидетельствуют о том, что градиент магнитного поля намагниченной области под катушкой в значительно большей степени зависит от коэрцитивной силы ферромагнитного металла, чем от толщины упрочняемого слоя. Расчет амплитуды второй гармоники при двухчастотном намагничивании ферромагнитного металла проводился для двух ферромагнитных материалов – стали 20 и 40Х, которые до виброупрочнения имели следующие магнитные параметры:

Сталь 20:
$$M_s = 1,5 \cdot 10^6$$
 А/м; $H_c = 440$ А/м; $M_r = 0,91 \cdot 10^6$ А/м;

 $M_C = 0,64 \cdot 10^6 \text{ A/m}.$

<u>Сталь 40Х:</u> $M_S = 1,45 \cdot 10^6$ A/м; $H_C = 1200$ A/м; $M_r = 0,71 \cdot 10^6$ A/м; $M_C = 0,42 \cdot 10^6$ A/м.

На рис. 4 показана зависимость напряженности амплитуды второй гармоники измеряемого магнитного поля в феррозонде от толщины упрочняемого слоя.

Рис. 4. Зависимость напряженности H_{dm} от толщины упрочняемого слоя

На рис. 5. приведен график зависимости амплитуды второй гармоники напряженности двухчастотного электромагнитного поля в сердечнике феррозонда от коэрцитивной силы.

Как видно из графиков зависимость амплитуды второй гармоники от толщины упрочняемого слоя несколько существеннее, чем от коэрцитивной силы (на 25-30%).

Рис.5. Зависимость напряженности $H_{\phi m}$ от коэрцитивной силы

Заключение. Толщину и микротвердость виброупрочненного слоя металла можно рассматривать как линейные зависимости показаний импульсного градиентометра и электромагнитного двухчастотного прибора. Зависимость толщины упрочняемого слоя металла в основном определяется по амплитуде второй гармоники.

Список литературы: 1.Бабичев А.В.Основы вибрационной обработки/ А.В.Бабичев, И.А.Бабичев //Основы вибрационной обработки -Ростов -на - Дону. Изд-во ДГТУ, 1999.-120 с. 2. Матюк В.Ф. Особенности влияния амплитуды и числа импульсов магнитного поля на величину градиента нормальной составляющей поля остаточной намагниченности при локальном намагничивании толстых изделий // Дефектоскопия.-1996, № 3-е, с.18-24.3. Анисимов С.Д. Электромагнитный неразрушающий контроль упрочненного слоя поверхности стальных изделий/ Анисимов С.Д., Ананченко Л.Н., Виноградова Н.Ю., Рогов И.Е.//Дефектоскопия, №1,2000,с.17-29.4. Никитченко А.Г. Расчет магнитных полей и интегральных характеристик электромагнитов с незамкнутым магнитопроводом / А.Г.Никитенко, В.П. Гринченков, Ю.А.Бахвалов // Электромеханика.-1977, №11, с. 1067-1072. 5. Мильгүй М.А. Формулы для описания нелинейных гистерезисных свойств ферромагнетиков // Дефектоскопия.-1987, №8,с.3-9. 6. Поливанов К.М. Потокосцепление намагниченного тела и электрического контура // Сборник «Исследование в области теоретического и прикладного магнетизма. АМСССР Свердловск, 1967, с. 181-189. 7. Мизин В.Г. Процесс двухчастотного перемагничивания ферромагнетика/ Винокуров В.Г.// Методы и приборы автоматического неразрушающего контроля. - Рига, 1980, с. 59-69. 8. Чурносов А.П. Математические модели магнитных полей в измерительных преобразователях твердости и толщины виброупрочненного верхнего слоя металла/ М.А.Калмыков, Д.Б.Карлов, В.В.Яковенко // Вібрації в техніці та технологіях , №3(59), 2010.,с 135-138. 9. Чурносов А.П.Математические модели магнитных полей в измерительных преобразователях твердости и толщины виброупрочненного верхнего слоя металла/ А.П.Чурносов.Д.В.Карлов, В.В.Яковенко// Вібрациї в техніці та технологіях №3(59).2010.-с.135 -139.

Поступила в редколегію 20.05.11