УДК 621.165.62-192

О.Ю. ЧЕРНОУСЕНКО, канд. техн. наук

Национальный технический университет Украины «Киевский политехнический институт» г. Киев, e-mail: cher olya@ckc.com.ua

РАСЧЕТНОЕ ИССЛЕДОВАНИЕ ИНДИВИДУАЛЬНОГО РЕСУРСА КОРПУСОВ ЦВД, ЦСД, КОРПУСОВ СТОПОРНЫХ КЛАПАНОВ И РОТОРОВ К–200-130 БЛОКА 200 МВТ

Запропонована розрахункова оцінка індивідуального ресурсу турбіни К-200-130 з визначенням теплового стану (TC), напружено-деформованого стану (НДС) та малоциклової утомлюваності корпусів, роторів, стопорних клапанів ЦВТ та ЦСТ при характерних режимах роботи енергоблоку.

The calculated estimation of individual resource of turbine K-200-130 is offered with calculating heat state (HS), stressed-deformed state (SDS), and little cycle of lassitude of corps, rotors, catch valves of CHP and CMP for exploitation modes energy blokes.

На тепловых электростанциях Украины в эксплуатации находятся 43 энергоблока с турбинами К-200-130 и К-210-130 различных модификаций. Ввод их осуществлялся с 1963 по 1988 г.г., и к настоящему времени наработка значительной части турбин К-200-130 превзошла 200000 ч. или приближается к этому значению. Для продления сроков эксплуатации энергоблоков 200 МВт необходимо определить индивидуальный ресурс турбины К-200-130-3 на основе комплексного подхода, сочетающего результаты разрушающего и неразрушающего контроля металла с поверочными расчетами на прочность и долговечность [1-4]. При оценке ресурса наметилась тенденция к переходу от дефектоскопии к методам технической диагностики, основанным на сочетании механики разрушений, металловедения и неразрушающего контроля напряженно-деформированного состояния (HЛC) оборудования [5-8].

Для определения индивидуального ресурса турбины К-200-130 выполнена расчетная оценка теплового состояния (TC), а также напряженно-деформированного состояния (НДС) и малоцикловой усталости ЦВД, ЦСД, АСК ЦВД и АЗК ЦСД при характерных режимах работы.

Моделирование теплового и напряженно-деформированного состояний роторов и корпусов ЦВД и ЦСД осуществляли в осесимметричной постановке. Технологические особенности режимов работы учитывали заданием тепловых граничных условий III рода и объемных центробежных усилий в расчетных элементах роторов. Коэффициенты теплоотдачи а вычисляли по рекомендациям [9].

Анализ температурных полей и напряжений в РВД и РСД показал, что они очень неравномерны как в осевом, так и в радиальном направлении при всех пусковых режимах. При пусках из неостывшего состояния HC-2 (после простоя 5-6 ч.) изменение параметров пара в цилиндрах в начальный период существенно влияет на тепловое состояние дисков и вала ротора и мало отражается на температурном состоянии концевых уплотнений, которые еще до толчка ротора (примерно 30 мин.) омываются горячим паром ($t_{\rm n} = 250$ °C), подаваемым в первые камеры концевых уплотнений. Поэтому наибольшие напряжения появляются в зоне первых ступеней ЦВД и ЦСД.

При пусках из HC-2 характерно некоторое начальное захолаживание наружной поверхности роторов с разностью температур по радиусу в сечении у диска 13-ой ступени со стороны 14-ой ступени РСД до -41° С на начальном этапе нагружения, что соответствует интенсивности напряжений растяжения в этой области $\sigma_i = 255$ МПа. В конце режима нагружения разность температуры становится положительной ($\Delta t = 50$ °С), что соответствует минимальным напряжениям $\sigma_i = 271$ МПа. Напряжения у корневой части диска со стороны передних уплотнений равны $\sigma_i = 200$ МПа, а на расточке ротора – 210 МПа. Также велики напряжения у корневой части диска 14-ой ступени – соответственно 205 МПа и 177 МПа.

Рис. 1. ТС и НДС РСД при пуске НС-2 (N₃ = 200 МВт)

Интенсивность напряжений от разности температуры и действия давления пара в ЦВД максимальна в зоне регулирующей ступени в месте радиусного перехода крепления обоймы ПКУ к камере регулирующей ступени и на наружной поверхности (69 МПа). В ЦСД интенсивность напряжений максимальна в месте соединения цилиндрической части, в которую вставляются обоймы переднего концевого уплотнения, и паровпуска (150 МПа). При пуске турбины из HC-2 для малоцикловой термоусталости существенное значение имеет захолаживание внутренней стенки корпусов ЦВД и ЦСД паром (в зоне регулирующей ступени ЦВД и паровпуска ЦСД) при развороте и выходе на режим холостого хода с последующим появлением положительных разностей температуры по толщине стенки при достижении полных параметров пара (Δt_{cr} изменялась от -4 до +12 °C). Напряжения в зоне паза под обойму переднего уплотнения составляют $\sigma_i = 87$ МПа, заднего равны $\sigma_i = 50$ МПа.

В корпусе ЦСД в зоне перехода от цилиндрической части, в которой крепится обойма ПКУ к паровпускной улитке, интенсивность напряжений меняется от 24 МПа до 127 МПа. В зоне крепления обоймы ПКУ напряжения меняются от 200 МПа до 128 МПа вдоль цилиндрического участка (рис. 2).

Рис. 2. ТС и НДС корпуса ЦСД при пуске НС-2 (N₃ = 200 МВт)

ЭНЕРГЕТИЧЕСКИЕ И ТЕПЛОТЕХНИЧЕСКИЕ ПРОЦЕССЫ И ОБОРУДОВАНИЕ

Моделирование ТС и НДС автоматического стопорного клапана (АСК) ЦВД и автоматического защитного клапана (АЗК) ЦСД производили в трехмерной постановке с применением SOLID WOKRS для пространственного представления АСК и АЗК в конечно-элементном виде. Начальное температурное распределение определяется результатом решения стационарной задачи теплопроводности.

Максимальные напряжения возникают при пусках их ХС и НС-2, достигают 192 МПа в конце этапа нагружения при пуске из НС-2 (рис. 3) и 200 МПа в начале нагружения при пуске из ХС. При этом в кольцевом сечении седла клапана имеют место значительные напряжения (240 МПа), что определяется конструкцией клапана и особенностями течения. Так же значительные напряжения возникают в подфланцевой зоне клапана.

Рис. 3. ТС и НДС АСК ЦВД при пуске НС-2 (N₃ = 100 МВт)

При резких изменениях температуры свежего пара в процессе нагружения турбины, а также в предтолчковом прогреве, когда при конденсации пара на внутренней поверхности металла клапана возникает температурный удар, напряжения могут вызвать развитие и углубление литейных дефектов металла клапана и привести к возникновению и развитию трещин. Максимальные напряжения для АЗК ЦСД возникают при пусках их ХС и HC-2, но не превышают 100 МПа. Максимум напряжений смещается в область высоких давлений, что соответствует конечным этапам пуска.

Для определения малоцикловой долговечности корпусных деталей использовались данные по упругим напряжениям, полученные в результате расчетов НДС турбины К-200-130, в соответствии с рекомендациями РТМ [9]. Результаты представлены в таблицах 1-5.

Максимальная разность температур по радиусу ротора РСД при пуске по типу HC-2 переместилась из зоны у основания диска регулирующей ступени в зону подачи пара на каминные уплотнения. Там же появляются максимальные напряжения.

Режимы пуска	Температура пара на ПКУ, °С	Радиальная разность температур $\Delta t_{\text{макс}}$ °C		Амплитуда интенсив-сти	Приведенная интенсив-сть	Допустимое	
		разворот	нагруж-е	напряжений σ _{ia} , МПа	деформации є _{апр} , %	число циклов N _{доп}	
HC-2	490/140	147	-72	257	0,12	3000	
HC-1	250/140	-	65	145	0,093	6000	
XC	250/140	-	72	179	0,109	4500	

Таблица 1. Результаты расчетной оценки малоцикловой усталости РВД турбины

Таблица 2. Результаты расчетной оценки малоцикловой усталости РСД турбины

Режимы пуска	Температура пара на ПКУ, °С	Радиальная разность температур Δt _{макс} , °С		Амплитуда интенсив-сти	Приведенная интенсив-сть	Допустимое число циклов <i>N</i> _{доп}	
		развороте	нагружение	напряжении б _{іа} , МПа	деформации є _{апр} , %	$n_N = 5$ $n_{\epsilon} = 1,5$	$n_N=3$ $n_{\epsilon}=1,25$
HC-2	490/140	-29	34	208,5	0,1	5000	10000
HC-1	250/140	_	58	197	0,116	3500	5830
XC	250/140	_	81	253	0,144	1250	2080

Результаты расчетов на малоцикловую усталость металла корпуса ЦВД при различных пусковых режимах представлены в табл. 3.

Таблица 3. Результаты расчетов на малоцикловую усталость металла корпуса ЦВД турбины

Режимы пуска	Разность температур по толщине стенки Δt_{max} , °С При При развороте нагружении Δt_1 °С Δt_{max} °С		Амплитуда интенсивностей напряжений $\sigma_{ia}, MПа$	Приведенная амплитуда интенсивностей деформации ε _{а пр} , МПа	Допускаемое число циклов N _{доп}
HC-2	-4	12	73	0,05	$200 \cdot 10^3$
HC-1	_	68	215	0,12	8000
XC	72	60	285	1,156	2400

Так как амплитуда интенсивности условно-упругих напряжений и, соответственно, деформаций в металле корпуса ЦСД при рассмотренных режимах пуска турбины сравнительно невелики (от $\sigma_{ia} = 69$ до 121 МПа, $\varepsilon_{anp} = 0,053$ % и 0,072 %), то допустимое число циклов для указанных режимов пуска меняется от $N_{a} = 40 \cdot 10^{3}$ для пусков типа XC до 100 $\cdot 10^{3}$ для пусков HC-1 и HC-2. Другими словами, с точки зрения малоцикловой усталостной прочности металл корпуса ЦСД турбины ограничений на обозримый срок эксплуатации не имеет. Однако, учитывая большую наработку и старение металла при проведении капитальных ремонтов турбины корпуса ЦСД и ЦВД должны подвергаться тщательному осмотру и проверке на возможное появление трещин в соответствии с разработанным регламентом.

Поверочный расчет на малоцикловую усталость АСК ЦВД, АЗК ЦСД и регулирующих клапанов турбины К-200-130-3 выполнен на основании анализа действующих нагрузок и температурных полей в клапанах ЦВД и ЦСД турбины при типичных пусковых режимах, а также полученных максимальных и минимальных значений интенсивностей напряжений при стационарных и переходных режимах работы турбоустановки.

Результаты расчетов напряженно-деформированного состояния корпусов СК и РК ЦВД и ЦСД представлены в табл. 4-5. Для АСК ЦВД температура стенки клапана, интенсивности напряжений и деформаций представлены в таблице 4.

АСК ЦВД	Температура стенки клапана	Интенсивность напряжений,	Приведенная деформация,	Допускаемое число пусков, N_{μ}
	$t_{\rm max}, {}^{\rm o}{\rm C}$	σ _{<i>i</i>} , ΜΠα	ε _{а пр} , %	$n_N = 5, n_{\varepsilon} = 1,5$
HC-2	500	192,0	0,071	5000
HC-1	497	170,0	0,066	8000
XC	489	200,0	0,0735	5800
Тепловой удар	500	538	0,197	1700

Таблица 4. Температура стенки, интенсивности напряжений и деформаций в корпусе АСК ЦВД

Для стопорного клапана ЦСД (АЗК ЦСД) температура стенки клапана, интенсивности напряжений и деформаций представлены в таблице 5.

Таблица 5. Температура стенки, интенсивности н	апряжений и деформаций в корпусе АЗК ЦСД
--	--

АЗК ЦСД	Температура стенки клапана <i>t</i> _{max} . °C	Интенсивность напряжений, о. МПа	Приведенная деформация, є _{а пр} , %	Допускаемое число пусков, N_{μ} $n_{N} = 5$, $n_{c} = 1.5$
HC-2	500	96,82	0,0355	10000
HC-1	480	90,0	0,033	20000
XC	460	96,63	0,03548	10200

При тепловом ударе (заброс конденсата и др.) температурные напряжения в стенке клапана в местах конденсатных пятен максимальны и могут достигать 350 МПа и более. Тогда допускаемое число пусков до появления трещин снизится по сравнению с табличными значениями до $N_{\rm g}^{\rm A3K~ IICA} = 2600$ при $\varepsilon_{\rm a~np} = 0,128$ %.

В случае тепловых ударов на начальных этапах пусков, а также при попадании влаги в горячий клапан возможно повышение напряжений до 570-610 МПа. В этом случае допустимое число циклов резко падает и может составить величину порядка 1800.

Выводы

1. В результате проведенного исследования получены данные, позволяющие оценить индивидуальный ресурс роторов, корпусов и клапанов ЦВД и ЦСД турбины К-200-130 на основе расчета теплового и напряженно-деформированного состояния при трех основных эксплуатационных режимах (HC-1, HC-2, XC).

2. Расчеты на малоцикловую усталость металла роторов, корпусов ЦВД и ЦСД, а также АСК ЦВД и АЗК ЦСД турбины К-200-130 показали, что минимальный ресурс для приведенной в статье турбины К-200-130-3 имеет ротор цилиндра среднего давления (1250 циклов).

3. Для повышения надежности элементов турбины, уменьшения тепловых нагрузок и улучшения качества эксплуатации необходимо провести минимальную модернизацию системы контроля основных параметров турбины с регистрацией параметров, влияющих на надежность турбины; внедрить современные системы мониторинга виброактивности турбоагрегатов с диагностикой состояния элементов валопровода, в том числе и на наличие трещин в роторе; внедрить системы контроля и технической диагностики теплового и напряженно-деформированного состояния

роторов высокого и среднего давления, а также корпусов ЦВД и ЦСД, АСК ЦВД, АЗК ЦСД, основанные на сочетании механики разрушений, металловедения и неразрушающего контроля напряженно-деформированного состояния (НДС) оборудования.

4. Продление эксплуатации високотемпературного энергетического оборудования требует новых подходов к выбору коэффициентов запаса прочности по числу циклов и по деформациям на основе детального исследования прочностных свойств сталей, применяемых в парових турбинах.

Литература

1. *Иванов В. А.* Проблема покрытия переменной части графиков энергопотребления // Теплоэнергетика. – 1983. – №6. – с. 2-6.

2. *Лейзерович* А. Ш. Продление срока службы паровых турбин // Энергохозяйство за рубежом. – 1985. – № 1. – с. 5-8.

3. *Плоткин Е. Р., Лейзерович А. Ш.* Пусковые режимы паровых турбин энергоблоков. – М.: Энергия, 1980. – 187 с.

4. Проблемы оценки остаточного ресурса стареющего оборудования / А. А. Дубов // Теплоэнергетика. – 2003. – № 11. – с. 54-57.

5. Проблема продления ресурса теплоэнергетического оборудования ТЭС / А. Б. Попков и др. // Теплоэнергетика. – 2003. – № 4. – с. 29-36.

6. НД МПЕ України. Контроль металу і продовження терміну експлуатації основних елементів котлів, турбін і трубопроводів теплових електростанцій. – Типова інструкція. СОУ-Н МПЕ 40.17.401:2004.

7. РД 10-577-03. Типовая инструкция по контролю метала и продлению срока службы основных элементов котлов, турбин и трубопроводов тепловых электростанций. – М., 2003.

8. РТМ 108.021.103. Детали паровых стационарных турбин. Расчет на малоцикловую усталость. – М., 1985. – № АЗ-002/7382. – 49 с.

9. РТМ 24.020.16-73. Турбины паровые стационарные. Расчет температурных полей роторов и цилиндров паровых турбин методом электромоделирования. – М., 1973. – № ВК-002/3209. – 104 с.

© Черноусенко О.Ю., 2007