П.С. ЗАВ'ЯЛОВ, канд. техн. наук, проф., НТУ «ХПІ»; *Ю.М. КУХТЕНКОВ*, канд. техн. наук, ст. наук. співр., НТУ «ХПІ»; *О.М. ГРИШИН*, ст. викл., НТУ «ХПІ»

РОЗРАХУНОК ВТРАТ ВІД ОСЬОВОГО ВИХРОВОГО ДЖГУТА У ВІДСМОКТУЮЧІЙ ТРУБІ РАДІАЛЬНО-ОСЬОВОЇ ГІДРОТУРБІНИ

Проведені експериментальні дослідження з визначення у відсмоктуючій трубі втрат від осьового вихрового джгута у модельній гідротурбіні РОЗ10. Втрати у відсмоктуючій трубі від вихрового джгута визначалися, як різниця повних експериментальних втрат енергії на різних режимах роботи та розрахункових втрат у відсмоктуючій трубі - циркуляційних, внутрішніх у відсмоктуючій трубі і втрат, пов'язаних з перерозподілом швидкостей внаслідок завихорення потоку. Ключові слова: гідравлічні втрати енергії, відсмоктуюча труба, робоче колесо, вихровий джгут.

Проведены эспериментальные исследования по определению потерь от осевого вихревого жгута в модельной гидротурбине PO310. Потери от вихревого жгута определялись как разность полных экспериментальных потерь энергии на различных режимах работы и расчетных потерь – циркуляционных, внутренних в отсасывающей трубе и потерь, связанных с перераспределением меридианальных скоростей вследствие завихренности потока. Ключевые слова: гидравлические потери энергии, отсасывающая труба, рабочее колесо, вихревой жгут.

Are spent experimental researches by definition of losses from a vortical swirl in modelling hydraulic turbine RO310. Losses from a vortical swirl were defined as a difference of full experimental losses of energy on various operating modes and settlement losses - circulating, internal of a draft tube and the losses connected with redistribution meridianal of speeds owing to a curling of a stream. Key words: hydraulic losses of the energy, draft tube, work wheel, votical swirl.

Вступ. Класифікація гідравлічних втрат у гідротурбінах умовна. Найбільшою мірою це відноситься до втрат у відсмоктуючій трубі. Так, до втрат безпосередньо в самій трубі, безумовно, варто віднести внутрішні втрати, що ϵ втратами у приграничному шарі на стінках відсмоктуючої труби. Втрати на виході з відсмоктуючої труби залежать від геометричних розмірів вихідного перетину, однак, більшою мірою визначаються розподілом швидкостей потоку, що залежить в основному від режиму роботи турбіни і геометрії лопатей робочого колеса на вході у відсмоктуючу трубу. Вихрові втрати, що обумовлені режимом роботи та геометрією лопатей, практично мало залежать від форми й розмірів труби. Разом з тим, з огляду на місце прояву вихрових і вихідних втрат, відносимо їх також до втрат у трубі.

Внутрішні і вихідні втрати у відсмоктуючій трубі розглянуті в роботах [1, 2], де показано, що в першому наближенні, зневажаючи нерівномірністю потоку на виході, можна вважати ці втрати пропорційними квадрату витрати. Найменш досліджені вихрові втрати. На основі підходу, використовуваного у вихровій теорії гвинта, у роботі [3] показано, що вихрова завіса, що збігає з вихідних кромок лопатей робочого колеса і на прямного апарату при мінли-

вості циркуляції уздовж розмаху лопаті, пов'язана з індуктивними, або, інакше кажучи, вихровими втратами у турбіні. Згідно [4] втрати у трубі складаються з наступних складових (1)

$$\xi_{\rm ot} = \xi_{\rm p} + \xi_{\rm Bm} + \xi_{\rm II} + \xi_{\rm BO} , \qquad (1)$$

де $\xi_{\rm p}$ – сума втрат внутрішніх, на виході з відсмоктуючої труби, пропорційна в першому наближенні квадрату витрати; $\xi_{\rm Bm}$ – втрати, обумовлені перерозподілом меридіональних швидкостей внаслідок завихоренності потоку за робочим колесом; $\xi_{\rm q}$ – вихрові втрати, що пов'язані із закрученням потоку (циркуляційні втрати), $\xi_{\rm во}$ – вихрові втрати, що пов'язані з осьовим вихрем.

Втрати ξ_p будемо визначаються, як деяка частка K_p кінетичної енергії потенційного потоку при даній витраті у вхідному перетині відсмоктуючої труби (2)

$$\xi_{\rm p} = \frac{\kappa_{\rm p}}{2\,{\rm gH}} \int_0^1 V_{\rm m\, nor}^2 \,{\rm d}\,\overline{\phi}\,,\tag{2}$$

де V_{тпот} – меридіональна швидкість потенційного потоку. Аналіз експериментального матеріалу показав, що коефіцієнт К_р можна прийняти 0.2.

Вихрові втрати $\xi_{\rm Bm}$ пов'язані з перерозподілом меридіональних швидкостей. Дійсний потік на виході з робочого колеса можна представити як суму потенційного потоку та деякого додаткового потоку – вихрового, втрати від якого визначаються із (3)

$$\xi_{\rm Bm} = \frac{1}{2\,\rm gH} \int_0^1 \Delta V_{\rm m}^2 \,\mathrm{d}\,\overline{\psi}\,,\tag{3}$$

де $\Delta V_m = V_m - V_{m nor}$. Різниця швидкостей ΔV_m , що входить у формулу вихрових втрат, залежить від завихоренності потоку на виході з робочого колеса. Остання, у свою чергу, визначається нерівномірністю циркуляції на виході з напрямного апарату і нерівномірністю циркуляції, що спрацьовується уздовж розмаху лопаті робочого колеса. Чим більше нерівномірність циркуляції в напрямному апараті і робочому колесі, тим більше ΔV_m і $\xi_{\rm Bm}$. Вихрові втрати, пов'язані із закрученням потоку,

$$\xi_{\rm II} = \frac{1}{2\,{\rm gH}} \int_0^1 V_{\rm u}^2 {\rm d}\,\overline{\phi} \tag{4}$$

- втрати кінетичної енергії обертання потоку.

Якщо закручення потоку на внутрішній поверхні струму не дорівнює нулю, то в перетині під робочим колесом осі турбіни (при r = 0) окружна складова швидкості від вихрового джгута теоретично прямує до нескінченності. У дійсності з'являється осьовий вихор, усередині якого рідина обертається за законом твердого тіла [5]. Енергія, що витрачена при виникненні осьового вихру, є третім видом вихрових втрат у відсмоктуючій трубі $\xi_{вo}$.

Експериментальні випробування у модельній гідротурбіні. Для визначення втрат $\xi_{во}$, через виникнення вихоря у відсмоктуючій трубі, були використані результати зондових випробувань структури потоку, проведені в проточній частині моделі РОЗ10. Випробування виконані співробітниками кафедри "Гідромашин" НТУ "ХПІ" в гідротурбінній лабораторії ВАТ "Турбоатом". Виміри були проведені п'ятиканальним кульовим інерційним зондом у косому перетині за робочим колесом уздовж вихідної кромки (рис. 1) при різних відкриттях напрямного апарату a_o . Результати вимірів, а також ре-

Рисунок 1 – Схема вимірювання параметрів потоку за допомогою інерційного зонду

зультати обчислень зведені у таблиці 1, 2. Модельна гідротурбіна РОЗ10 була випробувана з робочим колесом діаметром $D_1 = 0.388 \ m$, а $r_{\rm BT} = 0.05 \ m$ – радіус втулки робочого колеса.

Алгоритм розрахуноку втрат у відсмоктуючій трубі за робочим колесом від вихрового джгута. З урахуванням вищевикладеного, формули, що визначають втрати, можуть бути представлені у вигляді (5)-(7)

$$\xi_{\rm p} = \frac{K_{\rm p}}{2 \, {\rm gH}} \frac{\sum_{r_{\rm BT}}^{R} V^{3}_{\rm mi \ nor} r_{i}}{\sum_{r_{\rm BT}}^{R} V_{\rm mi \ nor} r_{i}}, \qquad (5)$$

$$\xi_{\rm II} = \frac{1}{2gH} \frac{\sum_{r_{\rm BT}}^{R} V^2_{ui \, \rm nor} V_{\rm mi \, nor} r_i}{\sum_{r_{\rm BT}}^{R} V_{\rm mi \, nor} r_i}, \qquad (6)$$

$$\xi_{\rm Bm} = \frac{1}{2gH} \frac{\sum_{r_{\rm BT}}^{R} (V_{\rm mi \, nor} - V_{\rm mi})^2 V_{\rm mi} r_i}{\sum_{r_{\rm BT}}^{R} V_{\rm mi} r_i}, \qquad (7)$$

де r_i – радіус і - го перетину; $K_p = 0.2$; $V_{mi} = \sqrt{V_{zi}^2 + V_{ri}^2}$, а V_{zi} , V_{ui} , V_{ri} –

складові швидкості за робочим колесом.

Втрати від осьового вихрового джгута з урахуванням експериментів розраховуються по формулі (8)

$$\xi_{\rm BO\, eKCII} = \xi_{\rm OI} - (\xi_{\rm p} + \xi_{\rm B\,m} + \xi_{\rm II}), \qquad (8)$$

де $\xi_{ot} = \xi_{oteken} - \xi_{вих}$, а ξ_{oteken} , ξ_{sux} , ξ_{ot} – відповідно повні з урахуванням вихідних, вихідні та повні відносні втрати у відемоктуючій трубі, що розраховуються виходячи з експериментальних даних потоку за робочим колесом; вони визначаються із залежностей

$$\xi_{\text{oteken}} = E_{\text{ocp}} / H = \frac{1}{H} \frac{\sum_{r_{\text{BT}}}^{R} E_i V_{\text{mi}} r_i}{\sum_{r_{\text{BT}}}^{R} V_{\text{mi}} r_i},$$
(9)

де E_{ocp} – повна осереднена енергія за робочим колесом, що визначалася з експерименту; $\xi_{\text{вих}} = \alpha_k V_{\text{вих}}^{\prime 2} / (2gH)$, де $\alpha_k = 2$ – коефіцієнт Коріоліса, $V_{\text{вих}}^{\prime} = (0.25 - 0.3)V_m^{\prime}$ – швидкість на виході з труби, а V_m^{\prime} – осереднена меридіональна швидкість на виході з робочого колеса.

У програмі, що складена для розрахунку втрат від вихрового джгута у відсмоктуючій трубі, ураховується той факт, що випробування проводилися при $D_1 = 0.388 \, M$ у косому перетині під кутом 39° до горизонталі.

Результати розрахунку вихрових втрат. Створено програму на мові Фортран та адаптовано під сучасну ЕОМ. У тексті програми розрахунку втрат від вихрового джгута у відсмоктуючій трубі використовувалися: напір випробувань моделі робочого колеса – H = $30 \, M$; K=2.58 – масштабний коефіцієнт перерахування; R_i – радіус розташування кульового зонда у *i*-й точці вимірювання; Q – витрата через турбіну, м³с⁻¹; N = 15 – кількість інтервалів розбивок експериментальних даних, та інші. Проведені чисельні розрахунки з визначення експериментальних втрат у трубі для чотирьох режимів a_0 при $n'_1 = 63 \, x 6^{-1}$ і H = $30 \, M$ (див. табл.1). Результати виміру швидкостей за робочим колесом за допомогою кульового зонду наведені у табл. 2.

Таблиця 1

№ реж.	<i>а_о</i> , мм	<i>Q</i> , м ³ с ⁻¹	ξ_{II}	ξ _p	$\xi_{\text{B}\text{m}}$	$\xi_{\rm ot}$	$\xi_{\rm BMX}$	$\xi_{\rm boekcn}$
1	15	0.2318	0.0122	0.006	0.0032	0.0304	0.003	0.009
2	20	0.2722	0.00011	0.007	0.00263	0.0117	0.0043	0.002
3	25	0.2988	0.00508	0.009	0.0037	0.0203	0.0047	0.0025
4	27.5	0.3217	0.01371	0.011	0.0045	0.035	0.005	0.0053

Визначення експериментальних втрат у відсмоктуючій трубі

Таблиця 2

сеч.	D		Vz	, м/с			Vu	, м/с			V_r	, м/с			Ε,	, М	
№	к, м	<i>a</i> _o =15	20	25	27.5	15	20	25	27.5	15	20	25	27.5	15	20	25	27.5
1	0.050	1.75	4.0	4.4	4.0	4.4	-0.2	-3.0	-5.3	0.6	2.5	3	3	1.2	1.25	2.25	2.7
2	0.055	1.85	3.5	4.1	4.5	4.25	-0.25	-3.4	-5.0	0.5	2.0	2.3	2.7	1.0	1.0	1.8	2.75
3	0.062	2.00	3.3	4.1	4.7	4.0	-0.25	-3.1	-4.6	0.3	1.6	1.8	1.8	1.05	1.15	1.5	2.6
4	0.070	2.30	3.5	4.2	4.7	3.7	-0.25	-2.75	-4.3	0.3	1.5	1.7	1.7	1.15	1.25	1.4	2.4
5	0.078	2.75	3.7	4.4	4.75	3.4	-0.15	-2.5	-4.0	0.4	1.4	1.4	1.4	1.25	1.25	1.4	2.0
6	0.086	3.10	3.9	4.55	5.0	3.25	-0.15	-2.25	-3.8	0.5	1.3	1.3	1.2	1.35	1.25	1.3	1.75
7	0.093	3.40	4.1	4.75	5.2	3.2	-0.15	-2.0	-3.5	0.6	1.1	1.0	0.9	1.25	1.2	1.25	1.7
8	0.101	3.75	4.3	5.0	5.3	3.1	0.0	-2.0	-3.3	0.5	1.0	0.9	0.8	1.25	1.2	1.2	1.6
9	0.103	4.00	4.5	5.1	5.4	3.0	0.2	-1.75	-3.0	0.2	0.8	0.8	0.7	1.35	1.1	1.2	1.4
10	0.117	4.10	4.5	5.2	5.5	2.83	0.25	-1.5	-2.7	0.0	0.6	0.5	0.5	1.3	1.05	1.2	1.3
11	0.124	4.05	4.6	5.15	5.6	2.7	0.3	-1.15	-2.2	-0.2	0.4	0.2	0.0	1.25	1.0	1.1	1.3
12	0.132	4.10	4.5	5.0	5.4	2.6	0.25	-1.35	-2.1	-0.1	0.2	0.1	-0.2	1.3	0.95	1.05	1.2
13	0.140	4.25	4.2	4.6	4.8	2.55	0.05	-1.35	-2.5	-0.1	0.2	0.1	-0.2	1.45	0.8	1.0	1.1
14	0.148	4.20	4.3	4.0	4.2	2.5	0.3	-1.5	-2.6	-0.2	0.7	-0.1	-0.3	1.45	0.7	0.95	1.05
15	0.155	3.25	5.0	3.1	3.7	2.4	0.8	-1.0	-2.3	-0.4	1.5	-0.5	-0.3	1.25	0.3	0.95	1.0

Результати вимірів швидкостей і повної енергії у трубі при $n'_1 = 63 \ x s^{-1}$ та $a_0 = 15;20;25;27.5$ мм

За даними експерименту були побудовані залежності $\xi_{\rm ц}, \xi_{\rm в.m.}, \xi_{\rm p.}, \xi_{\rm в.u.x}, \xi_{\rm от}, \xi_{\rm во експ}, \xi_{\rm во теор} = f(a_o)$ (рис.2) і зіставлені із результами обчислень по формулі, запропонованій у [4] для поворотньо-лопатевих турбін, $\xi_{\rm во теор} = 1.25\Gamma_{2\rm BH}^2 / ((\pi D_1)^2 gH)$, (10)

де $\Gamma_{2BH} = 2\pi r_{BT} V_u$. Результати розрахунку втрат по цій формулі зведені до таблиці 3. Порівняння експериментальних і теоретичних втрат від вихрового джгута у відсмоктуючій трубі при $n'_1 = 63 x e^{-1}$ представлені на рис.2.

Таблиця 3

1 coysibitatii	pospanying bip	ат ыд ымровог	го дла у від	emoki jio ini ipj
<i>а</i> ₀ , мм	\mathbf{V}_u , мс $^{-1}$	$r_{\rm BT}$, M	$\Gamma_{\rm 2BH}$, м $^2 { m c}^{-1}$	ξ_{BOTeop}
15	4.4	0.05	1.3	0.00455
20	- 0.2	0.05	- 0.059	0.00011
25	- 3.0	0.05	- 0.889	0.0021
27.5	- 5.25	0.05	- 1.55	0.0064

Результати розрахунку втрат від вихрового джгута у відсмоктуючій трубі

Висновки. Таким чином, із порівняння розрахункових і експериментальних втрат видно, що найбільші втрати приходяться на складові, пов'язані із

Рисунок 2 – Втрати ξ_{μ} , ξ_{Bm} , ξ_{p} , ξ_{Bux} , ξ_{ot} , $\xi_{Bo ekcn}$, $\xi_{Bo teop} = f(a_o)$ у відсмоктуючій трубі модельної гідротурбіни РОЗ10 при $n'_{1} = 63 x e^{-1}$

Із аналізу рис.2 бачимо, що втрати від осьового вихору у відсмоктуючій трубі, що обчислені із [3, 4] по формулі (10), де автор використовує коефіцієнт 1,25, отриманий із випробувань гідротурбін поворотньо-лопатевого типу на пропелерних режимах роботи і декілька відрізняються від $\xi_{воексп}$ для гідротурбіни РОЗ10. Виходячи з цього для радіально-осьових гідротурбіни, цей коефіцієнт у лівій частині графіку функції $\xi_{вотеор} = f(a_0)$ може бути запропонований у діапазоні 1,3-1,4, що більш точно відповідає даному типу гідротурбіни. Для інших типів РО гідротурбін також можуть бути уточнені коефіцієнти в (10) для втрат від вихрового джгута у відсмоктуючій трубі на основі проведення модельних випробувань.

Список літератури: 1. Колтон А.Ю., Этинберг И.Э. Основы теории и гидродинамического расчета водяных турбин. – М.-Л.: Машгиз. – 1958. – 340 с. 2. Этинберг И.Э. Теория и расчет проточной части поворотно-лопастных гидротурбин. – М.-Л.: Машиностроение. – 1963. – 388 с. 3. Топаж Г.И. Индуктивные потери энергии в гидротурбине. – М.: Энергомашиностроение. - 1975. – 325 с. 4. Этинберг И.Э., Раухман Б.С. Гидродинамика гидравлических турбин. – Л.: Машиностроение. – 1978. – 280 с. – Библиогр.: с. 272-275. 5. Милн-Томпсон Л.М. Теоретическая гидродинамика. – М.: Мир. – 1964. – 655 с.

Надійшла до редколегії 28.03.2011