mirovaniem sherohovatostej kontaktirujushhih poverhnostej." *Metody rozv'jazuvannja prykladnyh zadach mehaniky deformivnogo tverdogo tila.* Dnipropetrovsk: Nauka i osvita. No. 7. 2006. 11–21. Print. **10.** Koptovec, A. N., and A. A. Bobyljov. "Vzaimodejstvie normal'nyh i tangencial'nyh frikcionnyh avtokolebanij pri nalichii konstruktivnyh svjazej." *Vseukrai'ns'kyj nauk.-tehn. zhurnal: Vibracii' v tehnici ta tehnologijah.* No. 3 (48). Vinnytsa. 2007. 97–100. Print.

Поступила (received) 09.10.2014

УДК 532.5:621.65.01

М.М. КУТЯ, ст. преп., НТУ «ХПИ» *К.Ю. СКРЫЛЬНИК*, студент, НТУ «ХПИ» *В.В. ШЕВЧЕНКО*, студент, НТУ «ХПІ»

ОБЩАЯ МОДЕЛЬ РАСЧЕТА ПОКАЗАТЕЛЕЙ РАЗРАБОТКИ ГАЗОКОНДЕНСАТНОГО МЕСТОРОЖДЕНИЯ

Предложен метод расчета показателей добычи газа на основе уравнения материального баланса. Рассмотрены основные характеристики и нововведения метода, его применение как на практике, так и в процессе обучения студентов. Дан алгоритм работы основной модели. Проведено сравнение с аналогичной программой предыдущего поколения. Приведены пути и варианты дальнейшего усовершенствования алгоритма.

Ключевые слова: газ, добыча газа, пластовое давление, дебит, уравнение материального баланса.

Введение. За последние несколько лет в обучающем процессе на специальности «Добыча нефти, газа и газового конденсата» возникла тенденция, согласно которой студентам было необходимо проводить расчеты течения газа в продуктивных пластах с использованием ЭВМ. Однако подаваемый студентам материал не позволял делать эти расчеты с достаточной степенью точности и не обеспечивал создание прогнозных характеристик для месторождения на приемлемый срок (как минимум на пять лет), поскольку расчёты редко имели более двух-трех итераций.

Постановка задачи. Анализ аналогичных методов. Для устранения этих недочетов, а так же для обеспечения наглядности (создания виртуального расчетного стенда) было принято решения построить общую расчетную модель работы газоконденсатного месторождения в газовом режиме, которая могла бы обеспечивать необходимую точность расчетов, сравнимую с показателями коммерческих программ, была бы достаточно гибкой для проведения различных расчетов в широком диапазоне исходных данных без внесения изменений в код программы, выдавала бы результат в форме таблицы, совместимой с Microsoft Excel, обладала достаточной эргономикой работы и, как уже было сказано, простотой и наглядностью открытого не инкапсулированного кода. В качестве площадки для разработки была выбрана система

© М. М. Кутя, К. Ю. Скрыльник, В. В. Шевченко, 2014

компьютерной алгебры в интегрированной среде разработки Mathcad.

В качестве идеологического предшественника использовалась программа GasDrive, разработанная в НИИ газа, которая используется для расчета показателей работы газовых и газоконденсатных месторождений в газовом режиме. Данная программа показала свою приемлемую точность и простоту использования на большом количестве месторождений, но обладает рядом недостатков, таких как отсутствие прямой совместимости результирующей

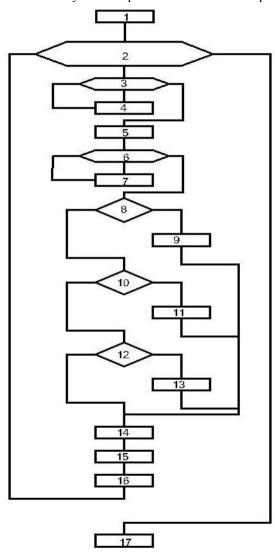


Рис. 1 – Блок-схема модели расчёта показателей разработки ГКМ.

таблицы с Microsoft Excel, что усложняет дальнейшее использование рассчитанных данных и не эргономичность самого процесса работы с программой. Использовании этой программы в обучающем процессе приводило к приобретению навыка «нажимания кнопок», но не к пониманию самого процесса расчета, так как код программы инкапсулирован и не является наглядным.

Анализ расчетной модели. Разработанная модель использует те же исходные данные, что и GasDrive: дренируемые запасы газа; газ, добытый до начала расчета; начальное пластовое давление; пластовая температура; температура газа на головке скважины; относительная плотность газа по воздуху; глубина до средины перфорации; диаметр НКТ; коэффициенты фильтрационных сопротивлений A и B; максимально допустимый дебит; максимально допустимая депрессия на пласт; минимально допустимое рабочее давление (минимально допустимое давление на головке скважины); годы проведения расчета; количество скважин; коэффициент эксплуатации скважин. По окончанию расчета модель выдает таблицу, которую можно экспортировать в Microsoft Excel.

На данный момент разработано два варианта этой модели. Первый служит для простого первичного знакомства студентов с методикой проведения расчета, особенностями ввода исходных данных и вывода результирующей таблицы. Модель является наглядной и простой в использовании, но не обеспечивает должной степени точности расчета и гибкости при введении исходных данных. Считывание исходных данных идет непосредственно из «Дано» вне расчетной модели. На рис. 1 представлена блок-схема модели со следующими обозначениями:

- 1 блок первичных подготовительных расчетов;
- 2 начало основного цикла вычислений шагом в один год;
- 3, 4 внутренний цикл итерационного вычисления пластового давления при помощи уравнения материального баланса;
 - 5 промежуточное определение расчётных коэффициентов;
 - 6, 7 блок итерационного определение статического давления;
 - 8 13 блок основных расчетов;
- 8, 9 расчет параметров месторождения в случае его работы в режиме постоянного дебита;
- 10, 11 расчет параметров месторождения в случае его работы в режиме постоянной депрессии на пласт;
- 12, 13 расчет параметров месторождения в случае его работы в режиме постоянного рабочего давления;
- 14 блок индикаторов, определяющих, в каком режиме работает месторождение в данный момент времени;
 - 15 блок заполнение результирующей матрицы;
 - 16 блок контрольных индикаторов;
 - 17 вывод готовой таблицы (матрицы).

Второй вариант модели представляет собой развитую версию первого варианта. Основные отличия таковы:

- считывание данных основной расчетной модели ведется из автомати-

чески составляемой «Таблицы исходных данных», которая заполняется исходя из данных внешнего «Дано» и дополнительных проектных корректировок, которые в данном варианте можно вносить не только на начало расчета, но и на необходимую по проекту дату. Проектные изменения можно вносить по следующим параметрам: количество скважин, коэффициенты фильтрационных сопротивлений A и B, максимально допустимый дебит, максимально допустимая депрессия на пласт, минимально допустимое рабочее давление, дренируемые запасы;

- точность расчета увеличена благодаря уменьшению шага итерации с 365 до 30дней;
- есть возможность оперировать данными не только помесячной, но и усредненной годовой таблицы;
- основная результирующая таблица расширена. Добавлены следующие параметры: максимальное пластовое давление в году, остаточные запасы газа, годовая добыча (в % от дренируемых запасов), годовая добыча (в % от текущих запасов).

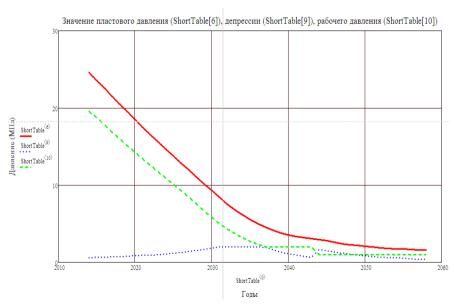


Рис. 2 – График изменения накопленной добычи за расчётный период.

В результате несколько уменьшилась наглядность и прозрачность работы модели (в основном по причине считывания из таблицы исходных данных, а не прямо из «Дано»), но в результате значительно увеличилась гибкость и точность расчета. Так же добавлено автоматическое построение графиков по нескольким основным параметрам.

На рис. 2-4, в табл. 1, 2 представлены результаты расчетов модели.

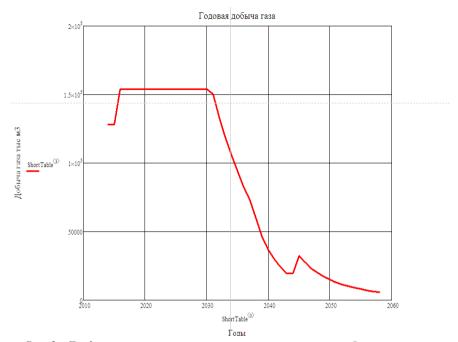


Рис. 3 – График изменения пластового давления, депрессии, рабочего давления средней скважины за расчетный период.

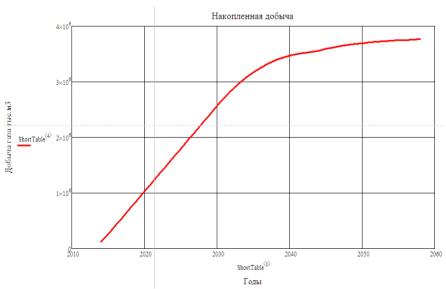


Рис. 4 – График изменения годовой добычи газа за расчетный период.

Таблица 1 – Результаты расчёта 1

Годы	Кол-во	Дебит,	Годовая	Накопленная	Пластовое	Пластовое
	скважин	тыс. м ³	добыча,	добыча,	давление на	давление -
		IBIC. IVI	тыс. м ³	тыс. м ³	конец года,	среднее
			TBIC. WI	TBIC. IVI	МПа	за год,
						МПа
2014	15	25	128250	128250	24,11130294	24,55365033
2015	15	25	128250	256500	23,17041516	23,59931186
2016	18	25	153900	410400	22,09147735	22,59007319
2017	18	25	153900	564300	21,03109329	21,514468
2018	18	25	153900	718200	20,00056559	20,47057882
2019	18	25	153900	872100	18,99621103	19,4545161
2020	18	25	153900	1026000	18,01472716	18,46280933
2021	18	25	153900	1179900	17,05312143	17,49232922
2022	18	25	153900	1333800	16,10865262	16,5402238
2023	18	25	153900	1487700	15,17878128	15,6038649
2024	18	25	153900	1641600	14,26112725	14,68080267
2025	18	25	153900	1795500	13,35343207	13,76872579
2026	18	25	153900	1949400	12,45352499	12,86542601
2027	18	25	153900	2103300	11,55929128	11,9687655
2028	18	25	153900	2257200	10,66864155	11,07664578
2029	18	25	153900	2411100	9,779481055	10,18697711
2030	18	25	153900	2565000	8,889677657	9,297647245

Таблица 2 – Результаты расчёта 2

	Стати-	Забойное	Депрес-	Рабочее	Остаточ-	Годовая	Годовая
Годы	ческое	давле-	сия,	давление,	ные	добыча,	добыча,
	давле-	ние,	МПа	МПа	запасы, %	% от дре-	% от оста-
	ние,	МПа				нируемых	точных запа-
	МПа					запасов	сов
2014	20,10	23,47	0,6330	19,5609	96,794	3,20625	3,4259
2015	19,30	22,51	0,6595	18,7381	93,588	3,20625	3,5475
2016	18,38	21,39	0,6927	17,7963	89,740	3,8475	4,4794
2017	17,49	20,30	0,7288	16,8718	85,893	3,8475	4,6895
2018	16,62	19,23	0,7678	15,9737	82,045	3,8475	4,9202
2019	15,78	18,18	0,8102	15,0979	78,198	3,8475	5,1748
2020	14,97	17,15	0,8565	14,2405	74,350	3,8475	5,4573
2021	14,17	16,14	0,9074	13,3981	70,503	3,8475	5,7723
2022	13,38	15,14	0,9639	12,5671	66,655	3,8475	6,1259
2023	12,62	14,15	1,0271	11,7440	62,808	3,8475	6,5256
2024	11,86	13,16	1,0985	10,9250	58,960	3,8475	6,9812
2025	11,11	12,17	1,1801	10,1063	55,113	3,8475	7,5051
2026	10,37	11,17	1,2747	9,2832	51,265	3,8475	8,1141
2027	9,638	10,17	1,3862	8,4502	47,418	3,8475	8,8306
2028	8,905	9,148	1,5201	7,6002	43,570	3,8475	9,6859
2029	8,173	8,094	1,6855	6,7234	39,723	3,8475	10,7247
2030	7,439	6,993	1,8967	5,8044	35,875	3,8475	12,0131

Перспективы дальнейшего усовершенствования модели. В данный момент ведется разработка продвинутой версии общей модели работы газоконденсатного месторождения, где будет устранен её основной недостаток —

расчет будет проводиться не по средней скважине, а по каждой скважине отдельно, с совмещением результатов расчетов каждой подмодели скважины (группы скважин) при помощи уравнения материального баланса. Текущие прототипы на базе Mathcad не позволяют добиться необходимой степени гибкости модели, а ее общие размеры делают ее полное восприятие невозможным или очень трудным для большинства студентов. Потому дальнейшая разработка ведется на платформе. NET Framework на языке программирования С#.

Вывод. По результатам сравнения с работой программы GasDrve установлено, что общая модель расчета показателей разработки газоконденсатных месторождений дала аналогичные результаты (что является следствием использования схожего алгоритма) и наследует все преимущества данной программы.

Список литературы: 1. *Окульшин О.И.*, *Бойко В.С.*, *Дорошенко В.М.*, Зарубин Ю.О. Технологии добычи, хранения и транспорта нефти и газа / Учебное пособие. – Ивано-Франковск: Факел, – 2003 – 434с. 2. Инструкция по комплексному исследованию газовых и газоконденсатных скважин. / Под ред. *Г.А. Зотова*, *З.С. Алиева*. – Москва: Недра, – 1980 – 301 с.

Bibliography (transliterated): 1. Okul'shin, O. I., et al. Technologii dobychi, hranenija i transporta nefti i gaza. Uchebnoe posobie. Ivano-Frankivsk: Fakel, 2003. Print. **2.** Zotov, G. A., and Z. S. Aliev. Instrukcija po kompleksnomu issledovaniju gazovyh i gazocondensatnyh skvazhin. Moscow: Nedra, 1980. Print.

Поступила (received) 06.10.2014

УДК 621.43

А.М. ЛЕВТЕРОВ, канд. техн. наук, ст. науч. сотр., ИПМаш НАНУ, Харьков;

Л.И. ЛЕВТЕРОВА, вед. инженер, ИПМаш НАНУ, Харьков

ПРОГНОЗИРОВАНИЕ ЭМИССИИ САЖИ И ОКСИДОВ АЗОТА В ДИЗЕЛЕ С НЕПОСРЕДСТВЕННЫМ ВПРЫСКОМ

Предлагается методология прогнозирования эмиссии сажи и оксидов азота с отработавшими газами дизеля с непосредственным впрыскиванием. Исследования проводились в термодинамической структуре полного цикла дизеля с 2-х зонной моделью сгорания и опираются на концептуальные положения лазерной диагностики процесса сгорания в дизеле, химической кинетики сгорания углеводородных топлив, сформировавшиеся в последние годы, и экспериментальные исследования. Численные результаты получены для режима максимального крутящего момента конкретного двигателя с учетом оценки влияния на эмиссию сажи и оксидов азота начала впрыскивания топлива, что немаловажно для возможного исследования альтернативных топлив.

Ключевые слова: моделирование, сажа, оксиды азота, дизель, токсичность, рабочий пронесс.

© А. М. Левтеров, А. И. Левтерова, 2014