Выводы.

1.Существующие упругие опоры с элементами, сохраняющими форму устойчивости, не решают проблему снижения виброактивности роторных систем в достаточной мере, так как они не способны в необходимых пределах изменять свою статическую жесткость.

2. Для эффективного снижения виброактивности роторных систем с обеспечением их прочности необходимо использовать опоры, которые имеют максимально возможную жесткость на нерабочих режимах и минимально возможную жесткость – на рабочих. Такие опоры позволяют повысить точность работы высокоскоростных роторных систем с сохранением требуемого ресурса.

Список литературы: 1. А. с. 358556 СССР, М. Кл. F 16 С 35/06. Упругое кольцо / Кельзон А.С., Алексеева Н.И., Клочков Б.Ф., Линдберг Л.Ф., Резницкий Г.М. – № 1191394/25–8; заявл. 20.10.1967; опубл. 03.11.1972, Бюл № 34. 2. А. с. 898148 СССР, М. Кл. F 16 C 27/00, F 16 C 35/063. Опора вала / Журавлев Н.Н., Раскин Я.М., Свирский И.Б. Подковырин Е.М., Роспасиенко В.И., Кошеленко И.И. – № 2762211/25-27; заявл. 07.05.79; опубл. 15.01.82, Бюл № 2. 3. А. с. 870784 СССР, М. Кл. F 16 С 27/02. Опора вала / Густин Л.И., Аджемян В.Г. – № 2776380/25-27; заявл. 07.06.79; опубл. 07.10.81, Бюл № 37. 4. А. с. 406048 СССР, М. Кл. F 16 С 27/04. Упругая опора / Кельзон А.С., Богорад Э.Е., Клочков Б.Ф., Нефедьев В.Н., Яковлев В.И., Январев Н.В., Ярославиев Р.А. – № 1728469/25-27; заявл. 24.12.1971; опубл. 05.11.1973, Бюл № 45. 5. А. с. 1314159 СССР, F 16 С 27/00. Упругая опора / Богорад Э.Е., Зельдин Ю.Р., Зобнин А.П., Малинин Л.М. – № 3932772/27–27; заявл. 24.07.85; опубл. 30.05.87. Бюл № 20. 6. А. с. 1200005 СССР. F 16 С 27/04. F 16 F 3/00. Упругая опора / Бендин А.С., Молчанов С.Б., Корнеев В.Н., Флусов А.Н. – № 3640278/25-27; заявл. 08.09.83; опубл. 23.12.85, Бюл № 47. 7. А. с. 567864 СССР, М. Кл². F 16 С 27/04. Упругая опора / Кельзон А.С., Богорад Э.Е., Клочков Б.Ф., Минакер В.Е., Циманский Ю.П. – № 2071570/27; заявл. 01.11.74; опубл. 05.08.77, Бюл № 29. 8. А. с. 288459 СССР, МПК F 16 С 33/48. Подшипник качения / Кельзон А.С., Январев Н.В., Яковлев В.И. – № 1371271/25–27; заявл. 23.10.1969; опубл. 03.12.1970, Бюл № 36. 9. А. с. 314009 СССР, МПК F 16 C 27/04, F 16 C 33/64. Подшипник качения / Кельзон А.С., Лущик В.М., Циманский Ю.П. – № 1498914/25–27: заявл. 21.12.1970: опубл. 07.09.1971. Бюл № 27. 10. А. с. 920285 СССР. М. Кл³, F 16 C 27/04, F 16 C 33/58. Полшипник качения / Генкин В.В., Андреев Ю.А., Богорад Э.Е., Кельзон А.С., Кузьмин А.В., Циманский Ю.П. – № 2962146/25–27; заявл. 18.07.80; опубл. 15.04.82, Бюл № 14. 11. А. с. 1016579 СССР, F 16 С 27/04. Подшипник качения / Андреев Ю.А., Богорад Э.Е., Гуляев В.Я., Генкин В.В., Лебедев А.С., Кельзон А.С., Никитин А.А. – № 3385282/25–27: заявл. 13.01.82: опубл. 07.05.83, Бюл № 17. 12. А. с. 1815439 СССР, F 16 С 27/04. Виброизолирующий подшипник качения / Калинин С.Г., Павлише В.Т., Назарчук С.П. – № 4798012/27; заявл. 02.03.90; опубл. 15.05.93, Бюл № 18. 13. А. с. 1213274 СССР, F 16 С 27/00. Упругая опора качения / Барков А.В., Родионов Е.С. – № 3660924/25-27; заявл. 29.07.83; опубл. 23.02.86, Бюл № 7. 14. А. с. 1490332 СССР, F 16 С 27/04. Упругая опора / Гинзбург А.Е., Дуан А.В., Дубилет С.Л., Богун В.С. – № 4343373/25-27; заявл. 05.10.87; опубл. 30.06.89, Бюл № 24. 15. А. с. 1013642 СССР, F 16 С 27/02. Упругая опора с регулируемой жесткостью / Кузьмин А.В., Богорад Э.Е., Генкин В.В., Гуляев В.Я., Кельзон А.С. – № 3372059/25–27; заявл. 23.12.81; опубл. 23.04.83, Бюл № 15. 16. А. с. 1013643 СССР, F 16 С 27/04. Упругая опора / Сафронов О.И. – № 3352228/25-27; заявл. 04.11.81; опубл. 23.04.83, Бюл № 15. 17. А. с. 1016578 СССР, F 16 С 27/04. Упругая опора / Андреев Ю.А., Богорад Э.Е., Генкин В.В., Илларионов И.В., Кельзон А.С., Коротаев А.Е., Никитин А.А. – № 3286906/25–27; заявл. 13.05.81; опубл. 07.05.83, Бюл № 17. 18. А. с. 811005 СССР, М. Кл³. F 16 С 27/02. Упругая опора / Смыков А.В., Кельзон А.В. – № 2708918/25–27; заявл. 08.01.79; опубл. 07.03.81, Бюл № 9. 19. А. с. 1160146 СССР. F 16 С 27/04. Полшипниковая опора / Расновский А.А. – № 3648068/25-27: заявл. 03.10.83; опубл. 07.06.85, Бюл № 21. 20. А. с. 1448136 СССР, F 16 С 27/04. Упругая опора / Рогачев В.М., Иевлев В.В. – № 4265212/31–27; заявл. 16.06.87; опубл. 30.12.88, Бюл № 48. 21. А. с. 1691608 СССР, F 16 С 27/02. Упругая опора вала / Рогачев В.М., Иевлев В.В. – № 4745828/27; заявл. 30.10.89: опубл. 15.11.91. Бюл № 42. 22. А. с. 1762008 СССР. F 16 С 27/04. 35/06. Упругая опора / Рогачев В.М., Иевлев В.В. – № 4842469/27; заявл. 20.04.90; опубл. 15.09.92, Бюл № 34. 23. Алабужев

П.М., Гритчин А.А., Ким Л.И. и др. Виброзащитные системы с квазинулевой жесткостью.; Под ред. К.М. Рагульскиса. – Л.: Машиностроение, Ленингр. отд–ние, 1986. – 96 с. **24.** Гапонов В.С., Гайдамака А.В. Пружня опора для підшипників роторних систем // Рішення про видачу патента на винахід № 12413/1 від 26.10.2009. **25.** Пановко Я.Г., Губанова И.И. Устойчивость и колебания упругих систем: Современные концепции, ошибки и парадоксы. – З–е изд., перераб. – М.: Наука. Гл. ред. физ.–мат. лит., 1979. – 384 с. **26.** Гапонов В.С., Гайдамака А.В. Корпус шпінделя // Рішення про видачу патента на винахід № 14490/1 від 13.11.2009.

Поступила в редколлегию 02.02.10

УДК 621.01: 539.3

Г.П. ГЛИНИН, зам. директора ОАО "Головной специализированный конструкторско-технологический институт", г. Мариуполь

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ЭЛЕМЕНТОВ АВТОТОПЛИВОЗАПРАВЩИКА АТЗ-22

У статті наведені основні результати експериментального дослідження статичних і динамічних міцнісних характеристик напівпричепа-цистерни АТЗ-22. Вони є перевірочними для визначення точності моделювання із застосуванням розрахункових моделей досліджуваного класу машин.

In the paper the basic results of experimental research of static and dynamic strengthening characteristics of ATZ-22 semitrailer-cistern are presented. They are testing for determination of modeling exactness with application of computational models of the investigated class of machines.

Введение. Как отмечается в работах [1-6], для создания адекватных и точных расчетных моделей вновь проектируемых машин, выполняющих регламентированные ответственные операции, целесообразно применение расчетноэкспериментального метода, предполагающего проведение первоначального цикла исследований на машинах-предшественниках. После этого созданные расчетные схемы используются для проведения расчетов и обновления проект-

Рис. 1. Автотопливозаправщик АТЗ-22

ных решений. После изготовления первого опытного образца созданная машина подвергается проверочным испытаниям.

Такая методика была использована в процессе создания топливозаправщика АТЗ-22 (рис. 1). Методика его расчетно-экспериментальных исследований описана в предыдущих публикациях [1-6]. В данной статье представлены результаты экспериментальных исследований уже созданного топливозаправщика АТЗ-22. 1. Объект экспериментальных испытаний. Автотопливозаправщик (АТЗ) АТЗ-22, спроектированный и изготовленный в ОАО "Азовмаш", представляет собой автопоезд, состоящий из полуприцепа (цистерна на двухосном шасси) и тягача, предназначен для выполнения следующих операций [7-10]: наполнение цистерны топливом собственным или сторонним насосом; заправки летательных аппаратов из своей цистерны или стороннего резервуара открытым или закрытым способом; откачивание топлива из раздаточных рукавов; транспортирование топлива на летном поле аэродрома; слив топлива из баков летательных аппаратов и т.д. Основные технические характеристики АТЗ-22 приведены в [3-5].

2. Общие условия экспериментальных испытаний. В соответствии с разработанной программой и методикой испытаний [10] проводились испытания опытного образца автотопливозаправщика, включающие в себя следующие этапы: прочностные статические и динамические испытания; гидродинамические испытания; дорожные испытания.

Исследование напряженно-деформированного состояния (НДС) конструкции АТЗ-22 при динамических испытаниях проводится с цистерной, заполненной до эксплуатационного объема при движении АТЗ со скоростью 40 и 50 км/ч с резким торможением; при движении АТЗ с поворотами влево (вправо) с максимально возможной скоростью; при движении АТЗ по дорогам III-V-й категорий.

При подготовке и проведении испытаний используются следующие оборудование и приборы: тензорезисторы КФ-5, система измерительная тензометрическая СИИТ-3, тензоусилитель 8АНЧ-23, манометр МТП, виброизмерительная аппаратура ВИ6-6ТН, осциллограф магнитоэлектронный К-20-22, секундомер СТЦ-1, цифровой толщиномер УТ-93П, вибратор ИВ-107, виброанализатор 01022 "Роботрон". Отдельные результаты этих испытаний представлены в виде осциллограмм в данной статье.

3. Результаты экспериментальных исследований. Исследование напряженно-деформированного состояния автотопливозаправщика выполнялось методом электротензометрии с использованием тензорезисторов типа КФ-5 [11], которые были установлены в следующих зонах цистерны (см. схему установки тензорезисторов, рис. 2) [1-6].

Динамические деформации измерялись по мостовой схеме, при этом в плечи полумоста включался один активный и один компенсационный тензорезисторы. Регистрация величин динамической деформации производилась на осциллографную фотобумагу магнито-электрического шлейфового осциллографа К-20-22. На рис. 3 представлены осциллограммы, зарегистрированные при дорожные испытаниях автотопливозаправщика.

Результаты испытаний. Результаты прочностных статических и динамических испытаний представлены в табл. 1.

Отработка режимов вибронагружений (выбор частот вибрации) по уровню напряженного состояния в контрольных точках цистерны представлена в табл. 2. 1. Наибольшие напряжения в исследуемых зонах от налива топлива в цистерну были зафиксированы на обечайке вблизи нижнего переднего люка тт. 21, 22, 27, 28 (28 ...35 МПа), а также вблизи приварки гидроопор тт. 29, 30 (57 МПа и 70 МПа).

Рис. 2. Схема установки тензорезисторов на АТЗ-22-5444

2. При создании испытательного давления 0,05 МПа в наполненной топливом цистерне зафиксированы наибольшие главные суммарные напряжения:

• на переднем днище: -25...-33 МПа (тт. 1, 2, 5, 6); на обечайке в зоне приварки шкворневой плиты: - 43 МПа (т. на обечайке в зоне между шкворневой плитой и опорами (сеч. 1:104 МПа, 121 МПа и +100 МПа (тт.28-30);

• на обечайке в месте приварки нижних переднего и среднего стыков – 81 МПа, 86 МПа (тт. 21, 22) и 28 МПа и 39 МПа (тт.81, 82).

3. В режиме смены точек опирания с шкворневой плиты на гидроопоры наиболее нагруженными выявились зоны обечайки у гидроопор и среднего нижнего люка: -67 МПа, -93 МПа (тт. 27, 28) и -67 МПа (т. 81) и -40 МПа на раме (т. 72); уровень напряжений остальных точек не превышал 40 МПа.

4. Статические напряжения, полученные от затяжки болтов крепления цистерн к раме моментом 200...250 Нм, составили 160 МПа (болт правый) и 260 МПа (болт левый).

5. Динамические дорожные испытания позволили выявить уровень знакопеременных напряжений при движении АТЗ по асфальто-бетону, при этом размах их амплитуды на раме достигал величин 25÷-25 (МПа), 33÷-33 (МПа) (тт. 72 и 67), на обечайке 10÷-10 (т. т. 29, 84), +18÷-18 (МПа) (т. 30) и 9÷-9 (МПа) (тт. 9, 10) и на болтах крепления -15÷-15 (МПа).

Таблица 1

Рис. 3. Примеры осциллограмм, полученных при испытаниях

6. При выполнении операций поворотов в движении на максимально допустимой скорости с учетом безопасности движения наиболее нагруженными были точки: на раме – $38 \div -64$ (МПа) (т. 07) и $22 \div -39$ (МПа) (т. 72), на обечайке – $20 \div -27$ (МПа) (т. 10) и $27 \div -27$ (МПа) (т.30), а напряжения на крепежных болтах были при этом: $35 \div -40$ (МПа) (болт правый) и $37 \div -38$ (МПа) (болт левый).

Наибольшие суммарные напряжения, зарегистрированные в элементах конструкции АТЗ-22 при статических и динамических испытаниях

а	Напряжения, МПа											
top	Статические					Ди	намичес	кие		Стат. + дин.		
исл					Д	вижени	е (асфал	ьт-бето	н)			
№ тензорез	налив	давление	опирание	рем.реж.	омвдп	направо	налево	выбоина	тормож.	выбоина-асф.	поворот (л/п)	тормож.
0	8	1	-	4	8	14	12	17	12	26	23	21
9	-	-	-5	-	-8	-9	-12	-21	-2	-12	-3	-
10	-	-	22	6	9	20	8	35	21	-9	20	5
10	-7	-9	-	-	-9	-15	-27	-35	-5	-51	-43	-22
29	36	37	-	16	10	2	9	11	21	84	82	84
2)	-	-	57	-	-10	-12	-9	-11	-21	-	-	-
30	53	34	-	-	18	20	27	27	32	114	114	119
	-	-	-88	-1	-18	-20	-27	-27	-45	-	-	-
53	6	14	-	8	2	2	2	2	2	22	22	22
	-	-	12	-	-2	-2	-2	-2	-2	-	-	-
54	-	5	-	-	3	6	2	6	5	-	-	10
	-11	-	-10	-16	-3	-6	-2	-6	-11	-17	-17	-22
57	2	-	-	0	2	3	3	2	2	4	5	4
	-	-1	-2	0	-2	-3	-3	-2	-2	-	-2	-
59	5	1	0	6	6	-	7	1	11	7	13	17
	-	-	-	-	-6	-22	-7	-1	-15	-	-6	-9
67	2	-	11	8	33	38	33	42	56	44	40	58
	-	-5	-	-	-33	-64	-28	-42	-28	-45	-67	-33
70	1	1	-	0	2	2	2	2	2	4	4	4
	-	-	-2	0	-2	-2	-2	-2	-2	-	-	-
72	12	-	24	33	25	22	11	22	33	34	34	45
	-	-3	-	-	-25	-39	-33	-22	-44	-13	-30	-47
75	4	-	2	4	6	23	7	9	5	13	27	9
	-	-2	-	-	-6	-	-12	-9	-5	-5	-10	-7
76	4	-			5	3	5	6	3	10	9	7
	-	-4	-6	-6	-5	-12	-5	-6	-3	-2	-12	-7
84	11	12	-	19	10	3	8	8	5	31	31	28
	-	-	-4	-	-10	-3	-8	-8	-5	-	-15	-5
т	160				14	20	35	25	30	185	195	190
Бол пран	адатяжка)			14	-40	-35	-25	-90	95	125	70	
Ш.	260				15	18	37	32	37	292	297	292
Бол	🗒 (затяжка)			15	-23	-38	-32	-60	228	222	228	

7. Динамические напряжения, обусловленные движением автотопливозаправщика по неровному асфальто-бетону с выбоинами, а также по грунтовой дороге (V категории), достигали на раме величин 42÷ –42 (МПа) (т. 67) и на обечайке цистерны 27÷ –27 (МПа) и 35– –35 (МПа) (тт. 30, 10); болты при этом испытывали ,,динамику" 25÷ –25 (МПа) (правый) и 32÷ –32 МПа (левый).

Частота, Гц	Напряжения, МПа	Примечание
6,08,0	3,53,5	груженая цистерна
23,0	2,72,7	включен один вибратор
36,0	6,06,0	включен один вибратор
47,0	9,59,5	включен один вибратор
20,0 47,0	11,011,0	автоматическая прокачка частот
6,08,0	3,53,5	включены два вибратора
24,0	3,93,9	включены два вибратора
37,0	4,44,4	включены два вибратора
20,0 49,0	10,010,0	автоматическая прокачка частот

Таблииа 2

8. При резких торможениях со скорости 50...60 км/ч напряжения на обечайке были 21÷-21 (МПа) и 32÷-45 (МПа) (т.т.29, 30), на раме 33÷-44 (МПа) и 56÷-28 (МПа) (тт.72, 67), на болтах 30÷-90 (МПа) (правом) и 37÷-60 (МПа) (левом).

9. Суммирование статических напряжений с динамическими не выявили превышения уровня допускаемых напряжений; при этом в более нагруженных точках обечайки суммарные напряжения достигали величин Таблииа З

Частота, Гц	Наработано циклов	Примечание
6,0 8,09,0	972000	порожняя цистерна
16,0	633600	
20,024,0	1476000	груженая цистерна
31,037,0	3094800	
ИТОГО:	6176400	

84 МПа и 119 МПа (тт. 29, 30), на раме (т. 67) +58÷−67 (МПа) и (т. 72) 45÷−47 (МПа), на болтах 297 МПа (левом) и 195 МПа (правом).

10. Результаты виброиспытаний АТЗ №3 представлены в табл. 3-4. Местом установки двух вибраторов была выбрана шкворневая плита, при этом ось вращения была параллельна оси "Х" – продольной оси цистерны.

11. Для контроля за уровнем напряжений были установлены тензорезисторы в зонах установки датчиков на АТЗ №1 – №№ 9, 10 (на обечайке шкворневой плиты) и №№ 29, 30 (на обечайке вблизи приварки гидроопор).

12. Отработка режимов вибронагружений (выбор частот вибрации) по уровню напряженного состояния в контрольных точках цистерны представлена в табл. 2. Время нагружения АТЗ и количество наработанных циклов на различных частотах приведена в табл. 3. Замеченные повреждения и дефекты

при виброиспытаниях представлены ниже в табл. 4.

15. После доработки было принято решение виброиспытания завершить, при этом наработанное число циклов соответствовало пробегу АТЗ на расстояние 12 тыс. км.

		Таблиі	ya 4
№ п.п.	Неисправности и дефекты	К-во циклов	
1.	Открылся замок ящика (левая сторона, второе отделение)	857200	
2.	Открылся замок насосного отделения (по правому борту АТЗ)	965300	
3.	Течь по трещине по левому борту (обечайка у шкворневой плиты)	6176000	
4.	Трещина по сварному, шву по правому борту (обечайка у шкворневой плиты)	6176000	

Заключение. Результаты экспериментальных исследований напряженного состояния автоцистерны топливозаправщика АТЗ-22 дают основание сделать следующие выводы.

1. Уровень напряжений, зарегистрированных при проведении прочностных и динамических испытаний, не превышает допустимых, что свидетельствует о правильности выбора конструктивных решений АТЗ-22.

2. Характер распределения во времени динамических напряжений, полученных при численном моделировании НДС элементов топливозаправщика АТЗ-22, а также их величины соответствуют напряжениям, полученным при экспериментальных испытаниях автотопливозаправщика.

В дальнейшем планируется сопоставление полученных экспериментальных данных с численными результатами исследования НДС автоцистерны, что дополнит базу данных достоверных расчетных моделей конструкций данного типа.

Список литературы. 1. Расчетно-экспериментальный метод определения параметров элементов машиностроительных конструкций / А.Д. Чепурной, Г.П. Глинин, Ю.Б. Гусев [и др.] // Вестник НТУ ,ХПИ". Тем. вып.: "Машиноведение и САПР". – 2005. – №53. – С. 162-176. 2. К вопросу об интерации систем автоматизированного проектирования, технологической подготовки производства и управления предприятием / И.В. Артемов, Е.Н. Барчан, Г.П. Глинин [и др.] // Вестник НТУ ,ХПИ". Тем. вып.: "Машиноведение и САПР". – 2005. – №60. – С. 9-29. 3. Ткачук Н.А. Интенсивная схема экспериментальных исследований элементов сложных механических систем / Н.А. Ткачук, Г.П. Глинин, Е.А. Орлов // Пр. Таврійської держ. агротехн. академії. Наук. фахове видання. – Мелітополь, 2006, Вип.43. – С.20-29. 4. Глинин Г.П. Экспериментальные исследования автотопливозаправщика АТЗ-22 / Г.П. Глинин // Вестник НТУ ,ХПИ". Тем. вып.: "Машиноведение и САПР". – 2006. – №24. – С. 20-38. 5. Чепурной А.Д. Базовые экспериментальные исследования для синтеза гибридных расчетных моделей высокоответственных машин / А.Д. Чепурной, Г.П. Глинин, Н.А. Ткачук // Вестник НТУ "ХПИ". Тем. вып.: "Машиноведение и САПР". – 2006. – №24. – С. 20-38. 5. Чепурной А.Д. Базовые экспериментальные исследования для синтеза гибридных расчетных моделей высокоответственных машин / А.Д. Чепурной, Г.П. Глинин, Н.А. Ткачук // Вестник НТУ "ХПИ". Тем. вып.: "Машиноведение и САПР". – 2006. – №24. – С.20-38. 5. Чепурной А.Д. Базовые экспериментальные исследования для синтеза гибридных расчетных моделей высокоответственных машин / А.Д. Чепурной, Г.П. Глинин, Н.А. Ткачук // Вестник НТУ "ХПИ". Тем. вып.: "Машиноведение и САПР". – 2006. – №24. – С.20-38. 5. Чепурной А.Д. Базовые экспериментальные исследования для синтеза гибридных расчетных моделей высокоответственных машин / А.Д. Чепурной, Г.П. Глинин, Н.А. Ткачук // Вестник НТУ "ХПИ". Тем. вып.: "Машиноведение и САПР". – 2009. – №28. – С.140-162. 6. Обиций подход к обоснованию параметров проектируемых машин на основе гибридных расчетно-