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BENCHMARK CREEP TESTS FOR THERMAL BARRIER  

COATINGS 
 
Тема цієї статті включає в себе ряд тестів на повзучість та еталонні рішення, які дають можливість пе-

ревірити аналіз методом скінченних елементів перерозподілу напружень в теплозахисних покриттях, 

пов'язаний з комерційними пакетами програмного забезпечення. Чисельні результати були порівняні у 
тестах з результатами, отриманими іншими методами та іншими авторами. Результати досліджень по-

взучості показали величини локальних напружень, які корелюють із залишковими напруженнями, ви-

значеними в термічно вирощеному оксиді методом люмінесцентної спектроскопії. Повзучість нікеле-
вих жароміцних сплавів підкладки має сильний вплив на напружений стан і подальше руйнування EB-

PVD теплозахисних покриттів. Отримані чисельні результати показують, що майбутні EB-PVD тепло-

захисні покриття повинні бути розроблені одночасно з нікелевою підкладкою, оскільки ефективність 
покриття залежить від складу і властивостей підкладки. 

Ключові слова: теплозахисне покриття; EB-PVD; повзучість; тест; багатошарова система; 
напружений стан. 
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Тема этой статьи включает в себя ряд тестов на ползучесть и эталонные решения, которые дают возможность 

проверить анализ методом конечных элементов перераспределения напряжений в теплозащитных покрыти-

ях, связан с коммерческими пакетами программного обеспечения. Численные результаты были сравнены в 

тестах с результатами, полученными другими методами и другими авторами. Результаты исследований пол-
зучести показали величины локальных напряжений, которые коррелируют с остаточными напряжениями, 

определенными в термически выращенном окисле методом люминесцентной спектроскопии. Ползучесть 

никелевых жаропрочных сплавов подложки имеет сильное влияние на напряженное состояние и дальнейшее 
разрушение EB-PVD теплозащитных покрытий. Полученные численные результаты показывают, что буду-

щие EB-PVD теплозащитные покрытия должны быть разработаны одновременно с никелевой подложкой, 

поскольку эффективность покрытия зависит от состава и свойств подложки. 
Ключевые слова: теплозащитное покрытие; EB-PVD; ползучесть; тест; многослойная си-

стема; напряженное состояние. 
 

The topic of this paper involves a number of benchmark creep tests and reference solutions that give the 
possibility to verify the finite element analysis of stress redistribution in thermal barrier coatings related  

to commercial  software packages.  The numerical  results have  been  compared in the  benchmark  tests  

with the results obtained by other methods and by other authors. The results of creep studies revealed 

the magnitudes of the local stresses that correlate with the residual stresses determined in the thermally 

grown oxide by the luminescence spectroscopy method. The creep properties of Ni-based superalloy 
substrate have strong influence on the stress state and subsequent failure of EB-PVD thermal barrier 

coatings. The obtained numerical results demonstrate that the future EB-PVD thermal barrier coatings 

should be developed simultaneously with the Ni-based superalloy substrate, because the effectiveness of 
coating is influenced by the composition and properties of the substrate. 

Keywords: thermal barrier coating; EB-PVD; creep; benchmark; multilayer system; stress  

 

1. Introduction. For structures operating in harsh environments up to tempera-

tures in excess of 900 °C, a coating may be applied to protect the material from direct 

exposure to the environment. In this way, protective coatings are required for both envi-

ronmental protection and thermal insulation of the structural material [1-3]. Thus, a pro-

tective coating can substantially improve at high temperatures the application potential 

of gas turbine blades of aircraft engines made out of Ni-based superalloys. 

The coating system for Ni-based superalloy substrate has a very complex structure 

and generally consists of several intermediate layers with a spatial variance in properties 

[4]. Conventional Pt modified aluminides or MCrAlY coatings (M = Ni and/or Co) are 

suitable as protective coatings for Ni-based superalloys due to the excellent chemical 

and physical compatibility with the substrate [5]. These metallic coatings are applied to 

the Ni-based superalloy substrates either by electron beam- physical vapor deposition 

(EB-PVD) in the case of the MCrAlY or by chemical vapour deposition for the Pt mod-

ified aluminide [6]. They are improving remarkably the oxidation resistance of Ni-

based superalloys. In the following, the coated substrate was pre-oxidized to form an 

alumina scale ( 32OAl ) [7]. A MCrAlY (or Pt modified aluminide) layer serves also as 

a suitable bond coat (BC) for yttria partially stabilized zirconia ( 2ZrO 7-8 wt % 

32OY ) due to the good adherence of the zirconia top coat (TC) to the alumina scale. 

The yttria partially stabilized zirconia (7-8 YSZ) is deposited on the pre-coated Ni-

based superalloy substrate using the EB-PVD technique, and it serves as excellent 

thermal barrier coating (TBC). The usage of approximately 200 μm thick ceramic EB-

PVD TBC on the surface of a gas turbine blade gives rise to the surface temperature re-



 

ISSN 2079-0775. Вісник НТУ «ХПІ». 2013. № 23 (996)                                     161 

duction up to 150 °C [8]. The extremely low thermal conductivity and good phase sta-

bility make a YSZ the most successful ceramic top layer, when combined with a metal-

lic interlayer. As the BC oxidizes, oxygen diffuses through 32OAl to react at the metal-

oxide interface and to create more oxide. Thus, a multilayer TBC system includes the 

Ni-based superalloy substrate, the BC, the TC and the thermally grown oxide (TGO). 

Degradation of the TBC systems over time can be investigated experimentally at 

laboratory conditions under thermal cyclic loading using the burner rig testing [9, 10]. 

Typical sample geometries are pins, plates, disks or turbine blades. A number of fac-

tors related to the numerous phenomena can affect damage growth and lifetime re-

duction of the TBC systems. In this way, the mechanisms of thermal, chemical, me-

chanical and structural degradation of multilayer coating systems involving Ni-based 

superalloys have been identified and studied [11-13]. In this regard, special attention 

is given to the consideration of high temperature oxidation [14-17], creep [18-20], fa-

tigue [21-23] and wear [8, 24, 25] occurring in TBC systems. 

Polycrystalline materials in TBC systems operating at high temperatures for a 

prolonged period of time exhibit creep deformation considered as a time-dependent 

irreversible deformation process. Even at the primary and secondary stages of the 

creep deformation, dislocations, impurity atoms and voids accumulate at the grain 

facets of metal and ceramic multilayers to form a cavitation [26, 27]. As micro-

scopic grain boundary cavities get larger and coalesce, dislocations, impurities and 

voids move out to grain boundaries, and microcracks along the grain boundaries 

start to be formed. Growth and coalescence of these microcracks at the grain 

boundaries of metal and ceramic multilayers occur in the tertiary stage of the creep 

process with the formation of macrocracks with some preferential orientation, of-

ten, directed perpendicular to the maximum principal stress, and, finally, with the 

creep rupture of a TBC system. Thus, creep changes the microstructure of metal 

and ceramic multilayers of TBC systems by introducing dislocations, impurities 

and voids in the initial stages of deformation, microscopic cavities in the following, 

and microcracks in the final stage of the creep process, all of them, at the grain fac-

es with some preferential orientation. Furthermore, the growth rate of pre-existing 

flaws, as well as, the growth of the irreversible formation of a nucleus of the new 

grain boundary microscopic cavities and microcracks essentially depend on the in-

tensity of the creep process. At the same time, creep deformation of metal and ce-

ramic multilayers in TBC systems is affected by the growth of cavities and mi-

crocracks. This influence that begins in the initial stages of the creep deformation, 

can be observed in the final stage of creep before rupture due to a possible increase 

of the creep strain rate. The creep rupture case without increase in the creep strain 

rate can be also observed. Thus, creep deformation and material deterioration in 

TBC systems due to growth of creep damage occur parallel to each other, and they 

have a reciprocal effect. Obviously, creep damage growth in metal and ceramic 

multilayers leads to the degradation of TBC systems over time.  

Thus, the functionality and reliability of Ni-based superalloy components with a TBC 

for automotive, energy and aerospace applications are strongly related to the creep damage 
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growth and stress redistribution over time in the coating system. A methodology for the du-

rability analysis of multilayer coating systems with Ni-based superalloy substrate is needed 

that complements experimental procedures for the evaluation of coatings. 

There are various sources of stresses in coatings [28]: 

a) Thermal induced stresses resulting from temperature changes and differences 

of the coefficient of thermal expansion of coating layers and substrate material. 

b) Stresses resulting from coating growth. In this case it is necessary to dis-

tinguish between intrinsic growth stresses and geometrically-induced stresses. In-

trinsic growth stresses are due to oxidation; chemical reactions, phase transfor-

mations, energetic particle bombardment, etc. 

c) Stresses due to the deformation of the coating systems under the applied 

loading and environmental influences. 

A small amount of studies on time dependent stresses under creep conditions in 

TBC systems involving Ni-based superalloy substrate are available in the literature. In 

this regard, it is necessary to address the following questions. First, creep studies exist-

ing in the literature are related to the modeling of the burner rig tests with simple sam-

ple geometries like pins, plates, disks, but not turbine blades. Second, creep analysis of 

TBC systems with consideration of a thermal gradient over the sample wall is scarce. 

Third, stresses from the creep curves used for the determination of material parameters 

in the creep constitutive equations must be identical with the original ones which occur 

in TBC systems. In the opposite case being considered, for example, in [29], the effect 

of creep on the stress state in a TBC system cannot be identified by the numerical anal-

ysis. Fourth, most studies do not involve creep of all layers. Hence, it is assumed that a 

number of layers in a TBC system are deformed only thermoelastically while others al-

so demonstrate creep deformation [30-39]. Furthermore, a high degree of numerical 

boundary stiffness has been introduced in [40] instead of the substrate. Fifth, creep of 

all system constituents was taken into account in several publications [41-43], however, 

without consideration of the applied forces. Finally, there is no comparative study of the 

creep behavior of TBC systems using results obtained by various authors or by different 

methods.  

The concept of benchmarks is becoming increasingly important in computational 

structural analysis [44]. By using benchmark tests and reference solutions researchers 

have the possibility to verify their numerical results related to the finite element code 

and commercial software packages (ANSYS, ABAQUS, ADINA). Several benchmark 

creep problems are considered in [45-49]. In the present paper, attention is given to the 

benchmark creep tests together with the reference solutions for the TBC systems in-

volving Ni-based superalloy substrate. This study does not consider degradation of 

TBC systems induced by high temperature oxidation, ratcheting, fatigue and wear. 

These issues will be a subject for future research. 

2. DLR sample for testing. The burner rig tests are less time consuming and cost 

intensive than gas turbine engine tests [9, 50]. Hence, the gas burner facilities give the 

possibility to evaluate the behavior of TBC systems at the laboratory conditions under 

thermomechanical cyclic loading. Different sample geometries like pins, plates or disks 
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were used, i.e. there is no single point of view on the burner rig testing.  

In the present paper, we take into account that mutiaxial stress states in turbine 

blades can be generated due to the thermal gradients over the blade wall, as well as, due to 

centrifugal forces. Special attention is paid to the sample geometry and testing procedure 

accepted at the German Aerospace Center (DLR) [22, 50, 51]. Hence, in order to study 

the degradation of TBC systems, which may oc-cur in-service and limit the performance 

of turbine blades, the test specimen (Fig. 1) was subjected in the DLR laboratory to condi-

tions, which simulate the in-service condition as close as possible. The TBC system in-

cludes Ni-based superalloy substrate, the BC, the TGO and the TC. The proportions of 

these layers in Fig. 1 do not reflect their actual sizes. Testing of the multilayer tubular 

specimen realizes cyclic thermal and mechanical loading including a thermal gradient 

over the specimen wall.  An applied mechanical loading by a force N reproduces the 
 

 

 

 

 

 

 

centrifugal force acting 

on the turbine blade. In 

general, the temperature 

T (Fig. 2) on the inner 

and outer surfaces of 

the tubular specimen 

and the load N can act 

over time under an in-

phase and out-of-phase 

loading  mode  [52].  A 

heating period 1t , a dwell 

 

Fig. 1 – Schematic representation of the TBC system [50] 

 

 time 12 tt   and a cooling period 23 tt   in the 

applied test cycle for the surface temperatures 

should be introduced in order to represent the 

degradation of TBC systems during an entire 

flight of a jet engine. It is possible to accept for 

the DLR cycle [50] approximately 1t = 30 s, 

12 tt  = 2 min and 23 tt  = 15 s. 

3. Modeling. The deformation of the 

test multilayer hollow cylinder (Fig. 1) with the inner and outer radii a and b after 

start up at time instants 1tt   is considered. We do not need to take creep during a 

heating period into account. The cylinder is sufficiently long in the axial direction 

compared to its diameter. The test specimen is subjected to an axial load N, as well 

as, to a temperature am TT   on the inside and bm TT   on the outside of its walls.  

In contrast to many experimental investigations of TBC systems, indications of 

rumpling of the TGO were not well pronounced, and an increasing waviness of the 

TGO over time was not observed experimentally in [53]. Following these experimental 

results, the modeling of TBC systems in the present paper is given without considera-

 
 

 

Fig. 2 – The cycle of temperature 
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tion of rumpling and waviness of the TGO in the cylindrical coordinate system  zr ,, , 

as shown in Fig. 1. Here r is the radial coordinate,   corresponds to the circumferential 

direction, and z is the axial coordinate. The temperature in a specimen can be assumed 

to be independent of the coordinates   and z, and, therefore, it will be a function of the 

radial coordinate r and the time t only, i.e. ),( trTT  . 

The stress state in the multilayer cylinder under study will be analyzed under 

assumptions of generalized plane strain and symmetry about the axis z. In this re-

gard, there are three nonzero components of strain zr   ,,  and three nonzero 

components of stress zr   ,, . The components of strain are assumed to be the 

sum of the elastic part, thermal part and creep part, i.e. 
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The components of the elastic strain can be defined by the generalized Hooke’s law 

for isotropic materials in such a form 
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where E is the Young’s modulus, and   is the Poisson’s ratio. The components of 

the thermal strain can be written as follows 
 

)( refTTT
z

TT
r    ,    (3) 

 

where   is the thermal expansion coefficient, and refT  is the temperature at the 

reference state. 

The loading conditions under consideration give the possibility to analyze the 

isotropic creep with time hardening, and without the memory effect and softening 

[54]. In this regard, the components of the creep strain rate under a multiaxial stress 

state can be defined as follows [55] 
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where the dot above the symbol denotes the derivative with respect to time t , i  is 

the von Mises equivalent stress, and A, n and m are the temperature dependent ma-

terial constants.  
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A number of comments need to be made in reference to Eq. (4). First, the von 

Mises stress in the present case has the structure 
 

     222

2

1
zrzri    .   (5) 

 

Second, the materials under creep conditions are assumed incompressible, and with 

the same response under tensile and compressive loading types. Third, in the case 

of uniaxial tension with stress  z =const Eq. (4) transforms to 

nmcc
r

nmc
z AmtAmt  

11

2

1
,    . Thus, under uniaxial tension Eq. (4) re-

flects the approximation of the creep curves in the direction of loading, such as  

.nmc
z At       (6) 

 

Two different numerical approaches and two in-house developed software 

packages were used in the present study to find the stresses in TBC systems under 

creep conditions. The first approach is the variational approach of establishing the 

basic equations of the generalized plane strain problem under consideration with 

use of the fourth-order Runge-Kutta-Merson’s method of time integration, com-

bined with the Ritz method for solving the creep problem. This approach used ear-

lier [56] for the analysis of a plain stress problem was applied after small modifica-

tions without any difficulties to the generalized plane strain problems. The second 

approach is the application of the refined theory of creep deformation in moderate-

ly thick shells of revolution which accounts for nonlinear distribution over their 

thickness of the components of strain tensor [57, 58] with use of the fourth-order 

Runge-Kutta-Merson’s method of time integration, combined with the discrete or-

thogonal shooting method of Godunov for the solution of creep problems. Initially, 

of course, it is necessary to do the comparative study of these two numerical ap-

proaches in TBC systems. 

4. Reference solution for thin plate. As a first example to verify the two ap-

proaches discussed above, the multilayer thin circular plate (Fig. 3) with an inner radius of 

2.0 mm and an outer radius 

of 4.111 mm consisted of 

Ni-based superalloy sub-

strate, the BC and the TGO 

is considered [59] instead 

of a multilayer long cylin-

der. The TC is ignored for 

simplicity in the present analysis. The thin plate under study is subjected to the temperatures 

aT = 800°C on the inside and bT = 1000°C on the outside of its walls (Fig. 3).  

The geometrical and material parameters for three layers of the coating  sys-

tem are given in Table 1.  Hence,  the thickness of the plate is not defined, because 

 
 

Fig. 3 – The multilayer thin circular plate 
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the stress-strain state in the thin plate under consideration was assumed to be the 

same along the thickness direction, and, thus, this size plays no role for determining 

stress components under plane stress conditions. The temperature at the reference 

state was taken as deposition temperature of the coating, i.e. refT = 1000°C. In this 

study, the thermoelastic deformation of the three layers has been taken into ac-

count, and creep of the plate is ignored for simplicity. 
 

Table 1 – Material properties and geometrical dimensions used for the calculations 

of thermal stresses in a multilayer thin circular plate 
 

Layer 
Elastic mo-

dulus (GPa) 

Poisson’s 

ratio 

Thermal expan-

sion 610  (°C-1) 

Thermal con-

ductivity (W/m/°C) 

Thick-

ness 

(mm) 

Substrate 150 0.3 16 30 2.0 

Bond coat 100 0.3 15 20 0.110 

TGO 310 0.2 8 6 0.001 

 

The distribution of the temperature in a plate at the steady state is shown in 

Fig. 4. It is based on the analytical solution [59] to the Fourier’s law for heat transfer with 

the boundary conditions T°= 800 °C at r = a and T= 1000 °C at r = b, and the continuity 

conditions for temperature and heat flux along interfaces. The dimensionless coordinate in 

the i th layer of the plate (I = 1, 2 and 3) has been introduced in Fig. 4 as  
 


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Hence, it is assumed that the plate consists of 

three layers (the substrate, the BC and the 

TGO) numbered 1, 2 and 3, respectively, 

iii hrr  1 , ihar ,0   is the thickness of 

the i th layer, ,3 br  i  is the weight co-

efficient introduced in such a way that
 

00  , 1 0.6, 2 0.25 and 3 0.15, 

1
3

1


i

i . 

The thermal gradient in the plate induces the thermal stresses. In the present 

study, it was accepted that z = 0 in a thin plate. Additionally, calculations have 

shown that the tangential stress is much larger than the radial stress. Therefore, the 

comparative study (Fig. 5, a-c) is performed only for the tangential stress using 

both numerical approaches discussed above and the finite element solution given in 

[59]. It is seen (Fig. 5, a-c) that the results obtained using the plane stress theory, as 

well as, the refined plate theory are in good agreement with the reference solution. 

 
 

Fig. 4 – Temperature distribution in a 
multilayer thin circular plate used in 

the stress analysis 
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There is also an excellent agreement (Fig. 5, b, c) between the results generated by 

these two numerical approaches considered in the present study.  
 

  

 

Fig. 5 – Thermal stress distribution in a mul-

tilayer thin circular plate obtained using: 

a –  reference solution [59], b – plane stress theo-

ry [56], c – refined plate theory [57, 58] 

 

5. Reference solution for hollow cylinder. As a second example for the veri-

fication of the two approaches used in the present paper, the multilayer long hollow 

cylinder (Fig. 1) with a = 2 mm and b = 4.3403 mm consisted of Ni-based superal-

loy substrate, the BC, the TGO and the BC is considered [37, 50]. The thickness of 

each layer is given in Table 2. In 

the following, the thermoelastic 

deformations of the cylinder sub-

jected to an axial tensile load 

q =100 MPa distributed uniformly 

over the end, )](/[ 22 abNq  , 

as well as, to the temperature 

aT = 800°C on the inside and the 

temperature bT = 1000°C on the 

outside of its walls (Fig. 6) will 

be analyzed. Creep of a cylinder 

is not considered here. The tem-

perature at the reference state was 

taken as deposition temperature 

of the coating, i.e. refT = 1000 

°C. The properties of each layer are defined in Tables 3 and 4. 

 
 

Fig. 6 – An axisymmetric slice of the coating hollow 

cylinder and thermal boundary conditions 

Table 2  – Materials and thickness of layers 

used for the calculations of thermal stresses 

in a long hollow cylinder plate 
 

Layer Material Thickness (mm) 

Substrate IN 100 DS 2.0 

BC NiCoCrAlY 0.120 

TGO 32OAl  0.0003 

TC 7-8 YSZ 0.220 

 

a c 

b  
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Table 3 – Properties for the TBC materials used in the analysis of thermal stresses 

in a multilayer long hollow cylinder at °C20   RT  and °C1000   HT  
 

Layer 

Elastic mo-

dulus (GPa) 

Poisson’s 

ratio  

Thermal xpansion coef-

ficient  106 (C-1) 

Thermal conduc-

tivity (W/m/°C) 

RT  HT  RT  HT  RT  HT  RT  HT  

Bond coat 140 70 0.322 0.351 8.6 16.6 8.7 27.5 

TGO 360 340 0.24 0.24 6.0 8.7 23 5.0 

Top coat 13 16 0.22 0.28 9.0 11.5 1.88 1.6 

Table 4 –Material properties for the IN 100 DS substrate at °C20   RT  and °C1000  

 HT  used for the calculations of thermal stresses in a multilayer long hollow cylinder 
 

Radial elastic 

Modulus (GPa) 

Axial elastic 

Modulus (GPa) 

Poisson's 

ratio 
0
  

Thermal expansion 

coefficient  106 (C-1) 

Thermal con-

ductivity (W/m/°C) 

RT  HT  RT  HT  RT  HT  RT  HT  RT  HT  

215 148 120 80 0.3 0.3 11.5 18.8 15 30 
 

Let iT  be the temperature (Fig. 7) in the i th layer of a cylinder under con-

sideration, 1ir  and ir  be the inner and outer radii of the i th layer, and ih  be the 

thickness of the i th layer, 4,1i . It is obvious that ar 0 , 

br 4 and iii hrr  1 .  

The steady state heat conduction equation for 

the i th layer can be written as 
 

0
1

2

2











r

T

rr

T ii , );( 1 ii rrr  , 4,1i .     (8) 

 

The boundary conditions are given as follows 
 

aTT 1 , ar                             (9) 
 

and 
                      bTT 4 , br  .                        (10) 

 

The continuity conditions for temperature and heat 

flux can be written as 

1 ii TT , irr  , 3,1i                                          (11) 

and 

                             r

T
K

r

T
K i

i
i

i







 


1
1 , irr  , 3,1i ,                                (12) 

 

where iK  is the thermal conductivity of the i th layer.  

The analytical solution of the boundary value problem given by Eqs. (8)-(12) 

has the form [60] 
 

TTTT

r

r

r

4321

1

3

2

a

b

 
 

Fig. 7 –  Schematic 

representation of the 

temperature field in a 

multilayer hollow cylinder 
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)(1 rT  /])/ln()[( 0432 aab TrrKKKTT , 

)(2 rT    /])/ln()[( 14321431 RTRRRTrrKKKTT baab ,  

)(3 rT      /])/ln()[( 21432421 RRTRRTrrKKKTT baab ,  (13) 

)(4 rT    /])/ln()[( 32143321 RRRTRTrrKKKTT baab , 

where 4321 RRRR  , )/ln( 014321 rrKKKR  , )/ln( 124312 rrKKKR  , 

)/ln( 234213 rrKKKR  , )/ln( 343214 rrKKKR  . 

The distribution of the temperature in the multilayer hollow cylinder under 

study at the steady state is shown in Fig. 8. It was calculated using Eq. (13) with the 

numerical data for the thermal conductivities iK  of the layers ( 4,1i ) taken as the 

material constants at 900 °C. These values were found by linear interpolation using 

the data given in Tables 3 and 4. In this way, a common formula is used, such as  
 

 

 
  TFFTF  21 , 

   

12

2112
1

TT

TFTTFT
F




 ,  

   

12

12
2

TT

TFTF
F




 ,       (14) 

 

where  21, TTT  , 1T  = 20 °C, 2T  = 1000 °C and function F plays the role of the 

thermal conductivities iK  of the layers. The dimensionless coordinate in the i th 

layer of a cylinder in Fig. 8 has been defined by Eq. 7 ( 4,1i ). Here it is assumed 

that 00  , 1 0.5, 2 0.18, 3 0.12, 4  0.2 and 1

4

1


i

i .  

The substrate material of this study is the Ni-based superalloy IN 100 which was direc-

tionally solidified (DS) with the [100] 

direction of the elongated grains ap-

proximately in the axial direction of the 

cylinder [37, 50]. In this case the elastic 

modulus in the radial direction of the 

specimen is approximately twice as 

high as the analogous magnitude in the 

axial direction (Table 4). Thus, the de-

viation in the grain orientation is at-

tributed to the variation in the elastic de-

formation and the anisotropy of the 

Young's modulus. Therefore, the com-

ponents of the elastic strain in the IN 

100 DS substrate are defined by means 

of elastic compliances ija (i, j = 1, 2, 3) 

by the generalized Hooke’s law for the orthotropic materials, such as [61] 
 

 
 

Fig. 8 – Temperature distribution in the coating 

hollow cylinder used in the stress analysis 
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zr
e
r aaa   131211  , zr

e aaa   232212  , 

zr
e
z aaa   332313  .   (15) 

 

Assuming transversal isotropy, elastic compliances have been determined in the 

present study as follows 
 

1
2211

 rEaa , 1
33

 zEa , 1
1

1
0231312

  zr EEaaa  ,  (16) 
 

where rE  and 0  are Young's modulus and Poisson's ratio under loading in the radial 

direction of the cylinder, and zE  and 1  are Young's modulus and Poisson's ratio un-

der loading in the axial direction. Thus, the elastic compliances for the substrate can be 

calculated at each temperature T using Eq. (16), the values of the elastic constants at 

20°C and 1000°C given in Table 4 and the interpolation procedure defined by Eq. (14). 

It is clear that Eq. (15) has been used for the substrate in this example instead of Eq. (2).  

The loading by an axial force N and a thermal gradient across the thickness of the wall 

induces the stress-strain state in a cylinder. The numerical analysis using both approaches 

discussed above and the finite element solution given in [37, 50] have shown that the tangen-

tial and axial stresses in this example are much larger than the radial stress. It is seen (Figs. 9, 

b, c and 10, b, c) that the results obtained by the use of the generalized plane strain theory are 

in good agreement with the analogous ones com puted using the refined shell theory. Some 

disagreements with the reference solution in the TGO  (Figs. 9. a-c and 10, a-c)  can be  ex-

plained by differences  in the temperature distributions used in the stress calculations. The 

comparative study of the axial stresses in a cylinder with q = 100 MPa and q = 0 (Fig. 9, a-c) 

shows the strong influence of the tensile load. On the other hand, the influence of the load q 

on the tangential stresses is insignificant (Fig. 10, a-c). The relationship observed in the pre-

sent study between the axial force and the deformation in the TBC system is in correlation 

with available experimental data [30, 62, 63].  

6. Creep data. Now the creep deformation of the DLR test multilayer hollow cyl-

inder (Fig. 1) with a = 2 mm and b = 4.3403 mm subjected to an axial tensile load q = 

400 MPa distributed uniformly over the end, as well as, to a temperature aT = 800 °C 

on the inside and a temperature bT = 1000 °C on the outside of its walls (Fig. 6) is con-

sidered. The value of q = 400 MPa has been accepted according to the practical recom-

mendations given in [64]. Further, the EB-PVD TBC system with the René 80 sub-

strate, the NiCoCrAlY BC, the alumina TGO and the 8YSZ TC will be analyzed. Earli-

er this TBC system has been investigated experimentally in [65] while the TBC system 

involving the René N5 substrate has been studied experimentally in [6]. The thickness 

of each layer of the cylinder under consideration is given in Fig. 1. The assumption of 

the initial isotropy for the layer materials is accepted. The thermal conductivities for 

the substrate, the BC, the TGO and the BC are the same as those in Tables 3 and 4. 

Thus, the stationary distribution of the temperature in the present cylinder, as well as 

in the cylinder considered in the preceding section 2.4, is shown in Fig. 8. 
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a 

 
a 

 
b  

b 

 
c 

 
c 

 

Fig. 9 – Axial stress distribution in a multilayer 

hollow cylinder obtained using (a) reference solu-

tion [37], (b) plane strain theory [56] and (c) re-

fined shell theory [57, 58]. Predictions for axial 

load q =100 MPa are shown by solid line while 

the results for q = 0 are shown by dashed line 

Fig. 10 – Tangential stress distribution in a multi-

layer hollow cylinder obtained with use of (a) 

reference solution [50], (b) plane strain theory 

[56] and (c) refined shell theory [57, 58]. Predic-

tions for axial load q =100 MPa are shown by 

solid line while the results for q = 0 are shown by 

dashed line 
 

 

The elastic parameters and thermal expansion coefficients of the layer materials 

in this study are presented in Table 5. The temperature at the reference state is the 
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deposition temperature of the coating, i.e. refT = 1000 °C. 
 

Table 5 – Elastic and thermal properties for the TBC materials used in the creep  

analysis of a multilayer long hollow cylinder 
 

Property 
René 80 [66, 67] BC [68] TGO [37] TC [37] 
800°C…900°C 850°C…950°C 20°C…1000°C 20°C…1000°C 

Elastic modu-

lus (GPa) 
145.804…128.561 146.458…146.457 360…340 13…16 

Poisson’s ratio 0.3…0.3 0.3474…0.3495 0.24…0.24 0.22…0.28 

Thermal expan-

sion coefficient 

 106 (C-1) 

15.1…16.0 15.4…16.2 6.0…8.7 9.0…11.5 

 

 

Table 6  – Parameters in the approximation of the creep curves given by Eq. (6) for the 

TBC materials used in the creep analysis of a multilayer long hollow cylinder 
 

Creep param-

eter 

René 80 [66, 69] BC [68] TGO  [70] TC [30, 33] 

760°C…982°C 850°C…950°C 887°C…950°C 700°C…1000°C 

A·10p 

(MPa-n min-m) 
1.950…1.361 2.059…1.437 1.434…1.737 1.500…1.542 

n 7.397…2.324 5.1…4.7 4.0…4.0 1.59…1.30 

m 0.2577…0.2044 1…1 1…1 1…1 

p 23…8 14…12 18…17 19…6 

 

The creep curves of the René 80, the BC, the TGO and the BC under uniaxial 

tension can be described by Eq. (6) with the material parameters given in Table 6. 

In other words, the creep behavior of the materials at the temperatures 1T  and 2T  

can be defined by the expressions 11
1

nmc
z tA   and 22

2
nmc

z tA   , respectively. 

Then the creep deformation of the layer materials in the uniaxial case at the tem-

perature  21, TTT   can be determined with use of Eq. (6) and an interpolation 

procedure, such as 
rr AAA 2

1
1
 ,   211 mrmrm  ,   211 nrnrn  , (17) 

 

where
T

T
r 2  and 

12

1

TT

TT




 . Thus, Eq. (4) corresponds to the creep constitutive 

equation in a TBC under multiaxial loading with creep parameters defined at the 

temperature  21, TTT   by Eq. (17). 

7. Numerical analysis of creep for TBC system. Taking into account the good 

correlation obtained earlier in Sections 4 and 5 between the results generated by the two 

numerical approaches involved in the present paper, the numerical analysis of the influ-

ence of the creep deformation on the stress state in the TBC system under consideration 
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was performed with the use of the refined creep theory of moderately thick shells of 

revolution. In this way, in order to satisfy the condition of the generalized plane strain de-

formation, the length of the cylindrical segment (Fig. 1) in the numerical study using the 

refined shell theory was taken as L
1710 mm, and, addi-tionally, symmetry boundary 

conditions have been applied. 

The plot for stresses in the TBC sys-

tem under study has a complex character 

(Fig. 11, a, b). The dimensionless coordi-

nate in the i th layer of a cylinder used 

in Fig. 11, a, b has been defined earlier in 

Section 5. The maximum tensile stress in 

a TBC system associated with the ther-

moelastic deformation is the axial stress 

at the inner surface of the tubular sub-

strate. On the other hand, the maximum 

compressive stress related to the thermoe-

lastic deformation of a multilayer hollow 

cylinder is the tangential stress in the 

TGO. The influence of the creep defor-

mation on the stress state in the TBC sys-

tem under consideration is significant. 

The maximum values of axial and tan-

gential stresses after 2 min of creep have 

occurred in the TGO (Fig. 11, a, b). In 

this regard, the tensile stress and com-

pressive one in the oxide under creep 

conditions have been found to be approx-

imately equal to 1.7 GPa and 1 GPa, re-

spectively. 

A number of comments need to be 

made in reference to the stresses after 2 

min of creep calculated in the TGO. First, 

a phenomenon related to the appearance 

and evolution of the growth stresses in the 

oxide is broadly discussed in the literature 

[11]. Thus, the growth stresses in the 

TGO can be caused not only by the high temperature oxidation, but also by the creep de-

formation that occurred in the TBC system. Second, the residual stress in the TGO deter-

mined by the luminescence spectroscopy method ranges usually from 1 to 5 GPa in com-

pression [71, 72]. However, in some TBC systems the residual stress in the oxide can 

reach up to 1.5 GPa in tension [72]. Thus, there is a good correlation between the experi-

mental data and model predictions obtained in the present paper. Third, a high level of 
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Fig. 11 – Redistribution of (a) axial and (b) 

tangential stresses in a multilayer hollow 

cylinder under creep deformation of the 

substrate, the BC, the TGO and the TC. 

Thermoelastic solution is shown by dashed 

line while stresses after 2 min are shown by 

solid line 
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stresses in the oxide can be a source of failure at the interface between the BC and the 

TGO or between the TC and the TGO [11, 73]. Therefore, the magnitudes of these stress-

es are of critical importance for evaluating the lifetime of the TBC system. 

8. Numerical simulation and discussion. The goal of the numerical modeling dis-

cussed in this section is to investigate the contribution of the creep properties of each layer 

into the stress redistribution in the TBC system under consideration with time. In this re-

gard, some layers of a hollow cylinder under study are assumed to deform only thermoe-

lastically while others also demonstrate creep deformation. Thus, involving creep of layers 

by step to step into the simulation of creep behavior the numerical study of the TBC stress 

redistribution will be performed and summarized.  
 

 
a 

 
b 

Fig. 12 – Redistribution of (a) axial and (b) tangential stresses in a multilayer hollow cylin-

der under creep of the TGO and the TC, and thermoelastic deformation of the substrate and 

the BC. Thermoelastic solution for a cylinder is shown by dashed line while stresses after 2 

min are shown by solid line 
 

Let the TGO and the TC in the TBC system demonstrate creep deformation while 

the substrate and the BC will experience only thermoelastic deformation. The influence of 

creep on the stress state in the multilayer hollow cylinder under consideration is illustrated 

in Fig. 12, a, b. It is seen that visible stress redistribution with time occurs only in the ox-

ide while  the stresses in the substrate,  the BC  and the TC remain  practically  unchanged. 

Such factors as sintering of the YSZ, porosity of the zirconia top layer and elastic anisot-

ropy of the TC may give rise to considerably higher stresses [74-79], and, therefore, more 

visible influence of creep on the stress state in this TC may be obtained by the numerical 

analysis. However, these issues will be a subject for future research. 

The new numerical simulation refers to the case of a TBC system in which the 

BC, the TGO and the TC reveal creep behavior while the substrate shows only a ther-

moelastic response. It can be concluded from Fig. 13, a, b that in the present study the 

changing of stresses with time is visible in the BC and the TGO. On the other hand, 

these changes in the substrate and the TC tend to be numerically insignificant. 

The next case of the numerical analysis is related to a TBC system in which the substrate, 

the TGO and the TC demonstrate creep while the BC will experience only thermoelastic defor-

mation. It is known that the axial stress at the inner surface of the tubular substrate is the greatest in 
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the problem under consideration after the thermoelastic deformation of a cylinder. It is seen (Fig. 

14, a) that although this stress is reduced during the creep process, the axial stress at the inner sur-

face of the tubular substrate is still relatively high after 2 min of creep. However, the maximum 

tensile stress after 2 min of creep occurs in the TGO (Fig. 14 a). In general, the redistribution of 

stresses with time in the present study is significant in each layer of a TBC system (Fig. 14, a, b).  
 

 
a  b 

Fig. 13 – Redistribution of (a) axial and (b) tangential stresses in a multilayer hollow cylin-

der under creep of the BC, the TGO and the TC, and thermoelastic deformation of the sub-

strate. Thermoelastic solution for a cylinder is shown by dashed line while stresses after 2 

min are shown by solid line 
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Fig. 14 – Redistribution of (a) axial and (b) tangential stresses in a multilayer hollow cylinder 

under creep of the substrate, the TGO and the TC, and thermoelastic deformation of the BC. 

Thermoelastic solution for a cylinder is shown by dashed line while stresses after 2 min are 

shown by solid line 
 

Further numerical simulation refers to the case of a TBC system in which the sub-

strate, the BC and the TGO demonstrate creep behavior while the TC shows only a ther-

moelastic response. The results of the numerical analysis are plotted in Fig. 15, a, b. The 

changing of stresses with time in this study, as well as, in the previous case is essential in 

each layer of a cylinder. In contrast, a significant relaxation of the axial stress under creep 

conditions occurs in a BC of the TBC system under consideration (Fig. 15, a). 
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A summary of the creep simulations is presented in Fig. 16, a, b. It is clear that 

creep of the substrate is the most important phenomenon that has the strong influence 

on the evolution of the growth stresses in the oxide and, consequently, durability of the 

TBC system under study. Hence, the influence of the creep deformation of the oxide 

and the YSZ BC on the stress state in the TGO is insignificant.  
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Fig. 15 –  Redistribution of (a) axial and (b) tangential stresses in a multilayer hollow cylinder 

under creep of the substrate, the BC and the TGO, and thermoelastic deformation of the TC. 

Thermoelastic solution for a cylinder is shown by dashed line while stresses after 2 min are 

shown by solid line 
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Fig. 16 – Time variation of (a) axial and (b) tangential stresses in the TGO of a multilayer 

hollow cylinder. Layers demonstrating the creep behavior in simulations are indicated next 

to the mentioned lines in the field of both diagrams in each case of the numerical analysis 
 

9. Conclusions. In this paper, two different numerical approaches have been pre-

sented to find the stress redistribution in TBC systems for a Ni-based superalloy sub-

strate under creep conditions. For this purpose, the creep deformation of the multilayer 

hollow cylinder subjected to an axial tensile load distributed uniformly over the end and 

a temperature gradient through the wall has been analyzed. Hence, the loading and 

creep conditions simulate the conditions which may occur in-service and limit the per-
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formance of turbine blades as close as possible. A number of reference solutions ob-

tained by other authors and by other methods have been used for the structural analysis. 

It was established numerically that creep of the Ni-based superalloy substrate is respon-

sible for the evolution of the growth stresses in the oxide of the TBC system under 

study. Thus, the effectiveness of coating is closely related to the creep properties and 

composition of the substrate. The creep problems presented in this paper should be con-

sidered as structural benchmarks by users of commercial software packages to verify 

the finite element analysis of stress redistribution in coatings at high temperatures. 
This research was partially supported by the German Academic Exchange Service (DAAD), the 

Alexander von Humboldt Stiftung and the German Federal Ministry of Education and Research 

(BMBF) through the German Aerospace Center (DLR). 
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