ИССЛЕДОВАНИЕ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ ПРОКАТНОГО ПРОИЗВОДСТВА

УДК 621.983.3.001 - 621.983.7.004

МАКОВЕЙ В. А., канд. техн. наук, доц., НТУУ "КПИ", Киев *ПРОЦЕНКО П. Ю.*, аспир., НТУУ "КПИ", Киев

ИССЛЕДОВАНИЕ ЛОКАЛЬНОГО ДЕФОРМИРОВАНИЯ ТРУБЫ ПРИ ПРОФИЛИРОВАНИИ ВИНТОВЫХ КАНАВОК

Проведено моделирование нескольких вариантов обкатки роликом канавки на трубе с использованием программного пакета Deform 3D. В качестве профилирующих инструментов для получения винтовых канавок на тонкостенной трубе применяются ролики и оправка. Исследовано влияние диаметра ролика на напряженно-деформированное состояние и локализацию деформации.

Проведено моделювання декількох варіантів обкатки роликом канавки на трубі з використанням програмного пакета Deform 3D. В якості профілюючих інструментів для отримання гвинтових канавок на тонкостінної труби використовуються ролики і оправка. Досліджено вплив діаметра ролика на напружено-деформований стан і локалізацію деформації.

The simulation of several variants of the roller profiling groove on the pipe using a software package Deform 3D. As a profiling tool for helical groove in a thin-walled tube are used rollers and the mandrel. The influence of the diameter of the roller on the stress-strain state and the localization of deformation was investigated.

Известным способом изготовления винтообразных труб является обкатка роликом с использованием оправки. Его осуществляют путем последовательной локальной пластической деформации стенки трубы при постоянном вращении трубчатой заготовки с закрепленной внутри нее винтовой оправкой и взаимосвязанном поступательном перемещении формообразующих элементов в виде тел качения вдоль оси обрабатываемой детали.

Процесс обкатки роликом сводится до пластического изменения формы путем перемещения частиц металла. Холодная пластическая деформация, которая происходит при обкатке, в значительной мере оказывает влияние на изменение физико-механических свойств. Показатели сопротивления деформации увеличиваются. При обкатке роликом следует стремиться к минимальной неоднородности деформации, поскольку градиент деформации повышает среднее напряжение и снижает пластичность, что может привести к разрушению и созданию в изделии остаточных напряжений [1]. При обкатке роликом деформируемые металлы упрочняются, причем неравномерное упрочнение сопровождается повышением твердости деформированного металла. В работе [2] методом определения твердости интенсивностей показана возможность напряжений при профилировании канавки.

Цель работы: определить напряженно-деформированное состояния, возникающее в процессе профилирования винтообразной канавки на трубе, и оценить локализацию деформации при профилировании.

В качестве профилирующих инструментов для получения винтовых канавок на тонкостенной трубе применяются ролики и оправка. Технологические схемы изготовления винтообразных труб подробно рассматриваются в работе [3]. определения НДС проводилось моделирование трех Для процессов профилирования винтообразной канавки на трубе роликовой обкаткой с использованием программного пакета Deform 3D, который был временно для опробования компанией «Тесис» г.Москва. Процесс предоставлен моделирования профилирования кольцеобразной канавки на трубе подробно описан в работе [4], в которой указаны особенности создания модели этого процесса. Ее можно использовать для моделирования процесса профилирования винтоподобной канавки на трубе. Для моделирования нескольких процессов профилирования винтообразной канавки использовались ролики и оправка с выточенною винтообразною канавкою (рис.1). Коэффициент трения при этом принят равным 0,1. В качестве материала трубы была выбрана сталь – X18H10T σ_в = 740 МПа). При этом моделирование процессов $(\sigma_{0.2} = 530 \text{ M}\Pi a)$ проводилось диаметрами профилирующих роликов разными С ($d_{\text{рол1}} = 12 \text{ мм}, d_{\text{рол2}} = 38 \text{ мм}$), а также с разными глубинами полученных канавок на трубе ($h_{k1} = 2$ мм, $h_{k2} = 3,5$ мм).

Каждый из этих процессов профилирования трубы можно разделить на два этапы (рис. 2):

- 1. Вдавливание ролика.
- 2. Обкатка роликом канавки на трубе.

Рис. 2. Этапы процесса профилирования винтообразной трубы: а –ролик вдавливается в трубу, б – ролик формирует винтовую канавку на трубе

Вдавливание ролика. В каждом моделировании ролик 1 со скоростью $V_{\rm BR} = 1 \, MM/c$ вдавливался в трубу 2, которая надета на оправку 3, на глубину h_{κ} (см. рис. 2). В моделировании профилирования канавки на трубе глубиной $h_{\kappa} = 3,5 \, MM$

ролик $d_{\text{рол}} = 38 \text{ мм}$ (см. рис. 1, г) вдавливался в уже сформированную канавку глубиной $h_{\text{k}} = 2 \text{ мм}$. Интенсивность напряжений на последнем шаге вдавливания, которая была определена в процессе моделирования с использованием ролика $d_{\text{рол}} = 38 \text{ мм}$ (см. рис. 1, в), который вдавливался на глубину $h_{\text{k}} = 2 \text{ мм}$, показана на рис. 3. Установлено, что интенсивное течение металла происходит: на внешней поверхности лунки возле скругленных кромок матрицы, на внутренней поверхности – возле скругленных кромок ролика. Для дальнейшего анализа этого этапа на продольном разрезе сформированной лунки при вдавливании ролика $d_{\text{рол}} = 38 \text{ мм}$ на глубину $h_{\text{k}} = 2 \text{ мм}$ были выбраны точки в местах интенсивного течения металла, которые показаны на рис. 4. Для указанных точек построены графики зависимости интенсивностей напряжений σ_i от перемещения ролика, показанные на рис.5.

Рис. 3. Интенсивность напряжений на последнем шаге вдавливания ролика в

Рис. 4. Координаты точек в местах наибольшего течения метала

Рис. 5. Интенсивность напряжений в различных точках с наиболее интенсивным течением материала

В этих точках также были определены главные нормальные напряжения. Графики зависимости главных напряжений $\sigma_1, \sigma_2, \sigma_3$ от перемещения ролика в точках показаны на рис. 6 – 8. На рис. 9 показаны зависимости интенсивности деформаций в рассматриваемых точках.

Рис. 6. Зависимости главных напряжений от перемещения ролика в точке №1

Рис. 8. Зависимости главных напряжений от перемещения ролика в точке №3

Рис.7. Зависимости главных напряжений от перемещения ролика в точке №2

Рис. 9. Интенсивность деформаций в различных точках с наиболее интенсивным течением материала

Из графиков видно (см. рис. 6–8), что в данных точках напряженное состояние близко к двухосному растяжению, так как σ_3 принимает небольшие значения.

В данном случае можно тоже выделить две зоны интенсивного течения металла. Первая зона находиться возле скругленной кромки матрицы, вторая – возле скругленной кромки ролика, где происходит интенсивное течение материала. В этих двух криволинейных зонах напряженное состояние близко к двухосному растяжению. Напряжения σ_1 и σ_2 зависят от радиусов кривизны этих зон. Поэтому чем меньше эти радиуса кривизны, тем большие значения главных напряжений.

$$\eta = \frac{\sigma_{okm}}{\tau_{okm}} = \frac{\sigma_1 + \sigma_2 + \sigma_3}{\sqrt{2}\sigma_i} \tag{1}$$

Оценим жесткость схемы напряженного состояния в различных точках стенки трубы в зависимости от перемещения при вдавливании ролика $d_{\text{рол}} = 38 \text{ мм}$ на глубину $h_{\text{k}} = 2 \text{ мм}$ (рис. 10).

Рис. 10. Зависимости жесткости системы η от перемещения ролика в различных точках

Обкатка роликом канавки. После вдавливания ролика было проведено моделирование процесса обкатки трубы роликом (см. рис. 2). На данном этапе ролик 1 одновременно вращается вокруг своей оси с угловой скоростью ω_p , а также в каждом случаи моделирования движется вдоль нее со скоростью $V_{de} = 21,33 \text{ мм/c}$. При этом оправка в трех случаях моделирования вращается в противоположном направлении вращению ролика с угловой скоростью $\omega_{on} = 160 \text{ o} 6 / \text{ мин}$.

Расчетная интенсивность напряжений в разрезе полученной винтоподобной канавки при использовании ролика $d_{\text{рол}} = 38 \text{ мм}$ (см. рис. 2) с формированием канавки глубиной $h_{\text{k}} = 2 \text{ мм}$, приведенная на рис. 11. Откуда видно, что наиболее интенсивно материал течет возле скругленных кромок ролика. Поэтому в этих местах выполняются разрезы, как показано на рис. 12.

Рис. 11. Интенсивность напряжений при обкатке роликом трубы в осевом разрезе

Рис. 12. Положение разрезов А-А и Б-Б

Далее рассматриваем два разреза А-А и Б-Б. В каждом из них с помощью программы DEFORM 3D находим распределение интенсивности напряжений, которое показано: для разреза А-А – рис. 13, для Б-Б – рис. 14. Из этих рисунков видно, что течение металла в разрезах А-А и Б-Б идентичное. Поэтому разрез Б-Б далее рассматривать не будем.

В разрезе А-А выбираем точки, показанные на рис. 15, для дальнейшего анализа процесса обкатки винтоподобной канавки на трубе. В зависимости от положения по оси z точек, указанные в табл. 1, были определены: интенсивность напряжений σ_i (рис. 16), интенсивность деформаций ε_i (рис. 17), жесткости напряженного состояния η (рис. 19) для всех трех случаев моделирования профилирования канавки на трубе и распределение главных напряжений $\sigma_1, \sigma_2, \sigma_3$ (рис. 18) для случая профилирования винтовой канавки на трубе глубиной $h_k = 3,5 \text{ мм}$.

Рис. 15. Координаты точек по оси z, использованные для анализа процесса обкатки винтоподобной канавки на трубе

		•				.				
$d_{\rm pon} = \overline{38 \ MM}$, $h_{\rm k} = 2 \ MM$		$d_{\rm pon} = 38 $ мм , $h_{\rm k} = 3,5 $ мм			$d_{\rm pon} = 12 $ мм , $h_{\rm k} = 2 $ мм					
$\omega_{\rm p} = 143$	об / ми	Ч,	$\omega_{ m p}=$ 130 об / мин ,			$\omega_{ m p}=453~o$ б / мин ,				
$\omega_{onp} = 16$	60 об / м	ин	$\omega_{\rm onp} = 160 \ o \delta / $ мин			$\omega_{\rm onp} = 160 \ o 6 / MuH$				
№ точк	СИ	Z	N⁰	точ	ки	Z	N₂	точі	ки	Z
	1	-7,6		_	1	-11,6	Ней	1	-6,4	
ней	2	-5,3	знешней ги		2	-9,06		2	-4,4	
знешн ги	3	-3,2		3	-5,02			3	-2,3	
	4	-1,6		ТИ	4	-2,7	3He	зне ги	4	-1,5
1a 1 10c	5	0	161		5	0	a I	10C	5	0
НИ	6	2,07	чки н верхн	HXC	6	3,1	НИ	н и	6	1,7
чк веן	7	4		7	6,3	ЯН	чк Bel	7	2,8	
То	8	5,6	L	OII	8	9,1	To	ОП	8	4,4
	1'	-7,2			1'	-11,2		1'	-6,3	
	2'	-5,2			2'	-9,07			2'	-4,4
іа іней Юсти	3'	-3,4	1а 1ней 10сти	3'	-5,2)Й ТИ	3'	-2,7		
	4'	-1,7		4'	-2,8		4'	-1,8		
	5'	0		HHE	5'	0	Ha Hhe Hoc	5'	0	
н н рен рхн	6'	1,95	H H	per pxr	6'	2,9	H	pe i pxi	6'	1,6
ЧК (уТ) Be]	7'	3,9	ЧК	[yT] Be]	7'	6,1	ЧК	IYT Be]	7'	2,7
Тс вн по	8'	5,3	To	BH IIO	8'	8,8	T _C	BH IIO	8'	4,1
1200 1000, 800 600	dpon=38, hs=3.5	d _{por} =38, <u>h</u> _k =2				eliii dpon=38, <u>he=3.5</u>	120	0 0 dpoπ=2 0	38,	

Таблица 1- Координаты точек по оси z при моделировании обкатки

Рис. 16. Зависимости интенсивности напряжений в разных точках: а –на внешней поверхности труби, б – на внутренней поверхности труби

Рис. 17. Зависимости интенсивности деформаций: а –на внешней поверхности труби, б –на внутренней поверхности труби

Рис. 18. Зависимости главных напряжений: а –на внешней поверхности труби, б – на внутренней поверхности труби

Рис. 19. Зависимости жесткости напряженного состояния: а – на внешней поверхности труби, б – на внутренней поверхности труби

По результатам изготовления винтоподобных труб было получено распределение твердости по толщине стенки. Используя экспериментальный метод определения напряжений по распределению твердости [2], можно найти распределение интенсивности напряжений в обрабатываемом теле. При этом интенсивность напряжений связана с твердостью по Викерсу зависимостью:

$$\sigma_i = K \cdot HV, \qquad (2)$$

де K = 0,3, HV – твердость по Викерсу

Твердость и интенсивность напряжений, которые определены экспериментальным путем, показаны на рис. 20. При больших глубинах профилирования в области наибольшей глубины канавки ($h_c \ge 4,5$ мм) появляется разрушение. На рис. 21 показана разрушенная труба винтовой трещиной.

Сравнение полученных экспериментальных и расчетных деформаций вдоль оси ролика $d_{\text{пол}} = 38 \text{ мм}$ (см. рис. 15) приведено в таблице 2.

Таблица 2 — Сравнение экспериментальных и расчетных деформаций вдоль оси ролика $d_{\text{под}} = 38 \text{ мм}$

		- po						
Mo	делирование	Эксперимент						
$h_{ m k}$, мм	${\cal E}_y, MM$	\mathcal{E}_{i}, MM	$h_{\rm k}$, мм	${\cal E}_{y}, MM$				
2	0,205	0,213	1,96	0,227				
3,5	0,366	0,459	3,73	0,5				
$h_{ m k}$ - глубина канавки								

Рис. 20. Распределение твердости и интенсивности напряжений (указанные в скобках), полученных экспериментально

Рис. 21. Фотография труби с винтовой трещиной

Выводы:

1. При вдавливании ролика интенсивное течение металла происходит: на внешней поверхности формируемой лунки возле скругленных кромок матрицы, а на внутренней – возле скругленных кромок ролика. Напряженное состояние в этих зонах имеет вид близкий до двухосного растяжения, так как σ_3 принимает небольшие значения.

2. При обкатке роликом трубы наибольшие интенсивности напряжений и деформаций достигаются возле скругленных кромок ролика. При этом жесткость напряженного состояния на внешней поверхности трубы достигает максимума на оси ролика, а на внутренней – в точке начала деформирования трубы (т. 3' см. рис. 15). Винтовое разрушение трубы появляется в области наибольшей глубины канавки ($h_c \ge 4,5$ мм) при деформации $\varepsilon_{\kappa} \ge 0,6$ (рис.21).

Список литературы: 1. Огородніков В.А., Музичук В.І., Нахайчук О.В. Механіка процесів формозмінювання з однотипними схемами механізму деформації. – Вінниця, Універсум, 2007. – 179 с. 2. Маковей В.О. Напряженно-деформированное состояние винтоподобных труб при профилировании / Маковей В.О., Бородій Ю.П., Проценко П.Ю. //Вестник НТУ"ХПИ". – 2010. – №42 – С. 64-70. 3. Маковей В. О. Профілювання гвинтоподібних труб обкочуванням / Маковей В.О., Бородій Ю.П., Кліско А.В., Проценко П.Ю. // Вісник Київского політехн. ін-та. Машинобудування. – 2010. – №60. – С. 55-60. 4. Маковей В.О. Моделювання процесу профілювання канавок на трубах роликовим обкочуванням / Маковей В.О., Проценко П.Ю. – №62. – С. 203-206. 5. Смирнов-Аляев Г.А. Механические основы пластической обработки металлов. Изд. "Машиностроение", 1977. 272 стр.