поверхні вуглецевих волокон побудовано методику визначення кінетичних параметрів процесу розкладання та дифузії бору з обсягу реактора на поверхню вуглецевих волокон.

Список літератури: 1. Скачков, В. А. Бороуглеродные композиционные материалы / В. А. Скачков, В. И. Иванов, А. Л. Иващенко // Стратегия качества в промышленности и образовании : материалы межд. научн.-практ. конф. – Днепропетровск-Варна : Пороги-ТУ Варна, 2006. – Т. 1. – С. 184. 2. Гурин, В. А. Исследование газофазного уплотнения пироугле-родом пористых сред методом радиально движущейся зоны пиролиза / В. А. Гурин, И. В. Гурин, С. Г. Фурсов // Вопросы атомной науки и техники. - Харьков : ННЦ ХФТИ, 1999. - Вып. 4 (76). - С. 32-45. 3. Денисов, Е. Т. Кинетика гомогенных химических реакций / Е. Т. Денисов. – М. : Высшая школа, 1988. – 390 с. – Библиогр. : с. 374-382. – ISBN 5-06-001337-5. 4. Франк-Каменецкий, Д. А. Диффузия и теплопередача в химичес-кой кинетике / Д. А. Франк-Каменецкий. – М. : Наука, 1967. – 491 с. – Библиогр. : с. 485-489.

Поступила в редколлегию 03.06.2012

УДК 541.127: 542.943

А.Г. ГАЛСТЯН, канд. техн. наук, доц., Института химических технологий Восточноукраинского национального университета им. В. Даля, Рубежное

ИССЛЕДОВАНИЕ РЕАКЦИИ ИЗОМЕРНЫХ АЦЕТИЛАМИНОТОЛУОЛОВ С ОЗОНОМ В ЖИДКОЙ ФАЗЕ В ПРИСУТСТВИИ МАРГАНЕЦБРОМИДНОГО КАТАЛИЗАТОРА

Вивчено кінетику реакції озону з ацетиламінотолуолами в середовищі оцтового ангідриду в присутності сульфатної кислоти і змішаного манганбромідного каталізатора. Показано, що основними продуктами окиснення в цих умовах є відповідні ацетиламінобензилідендіацетати (56-67%), в продуктах реакції також знайдено ацетиламінобензилацетати (18-20%). Розглянуто механізм каталізу, що пояснює отримані експериментальні дані

Ключові слова: Окиснення, ацетиламінотолуол, озон, каталізатор.

Изучена кинетика реакции озона с ацетиламинотолуолами в среде уксусного ангидрида в присутствии серной кислоты и смешанного марганецбромидного катализатора. Показано, что основными продуктами окисления в этих условиях являются соответствующие ацетиламинобензилидендиацетати (56-67%),продуктах реакции также обнаружены В ацетиламинобензилацетаты объясняющий (18-20%). Рассмотрен механизм катализа, полученные экспериментальные данные.

Ключевые слова: Окисление, ацетиламинотолуол, озон, катализатор.

The kinetics of liquid-phase catalytic oxidation of acetylaminotoluene with of ozone in the presence of sulfuric acid and manganese acetate (II) and potassium bromid . It is shown that the main products of oxidation in these conditions are acetylaminobenzilidendiatsetat (56-67%)and acetylaminobenzilatsetat (18-20%). The mechanism of redox catalysis.

Keywords: Oxidation, acetylaminotoluene, ozone, catalyst.

1. Введение

Ранее [1,2] было показано, что селективное окисление аминотолуолов озоном без разрушения ароматического кольца протекает в растворе уксусного ангидрида в присутствии марганец (II) ацетата и катализатора ацилирования – серной кислоты. Основными продуктами реакции в условиях катализа являются

аминобензиловые спирты в виде соответствующих ацетиламинобензилацетатов (ААБА), выход которых достигает 52-65 %. Получить в этих условиях в качестве основных продуктов аминобензальдегиды в виде ацетиламинобензилидендиацетатов (ААБДА) не удается, выход их не превышает 19 %. Для решения этой задачи в данной работе исследовано влияние добавок бромида калия на кинетику и состав продуктов каталитического окисления ацетиламинотолуолов (ААТ) озоном, поскольку известна способность бромидов щелочных металлов в процессе каталитического окисления алкилароматических углеводородов озоном повышать глубину, селективность и скорость окисления [3].

2. Экспериментальная часть

Окисление проводили в стеклянной колонке с пористой перегородкой при температуре 5-20[°]C. В колонку загружали 10 мл растворителя, расчетное количество ингредиентов и подавали озоновоздушную смесь со скоростью 30 л·ч¹ с концентрацией озона 4,8·10⁻⁴ моль·л⁻¹. Концентрацию озона в газовой фазе анализировали спектрофотометрическим методом по поглощению в области 254-290 нм, концентрацию Mn(III) в растворе - йодометрически. Идентификацию и количественное определение продуктов реакции осуществляли методом ГЖХ на хроматографе с пламенно-ионизационным детектором на колонке 3 м, заполненной носителем Інертон AW-DMCS, обработанным 10% раствором щелочи и нанесенной на него неподвижной фазой "Apiezon L" в количестве 10% от массы носителя при температуре испарителя 250° C, термостата – по программе 90-200[°]C в течение 15 мин; скорость газа-носителя (азота) – 1,8, водорода – 1,8 и воздуха – 18 л·ч⁻¹. В качестве внутреннего стандарта использовали нитробензол.

3. Результаты и их обсуждение

При атмосферном давлении И температуре 20°С (рис.1) озонирование 4-ААТ в среде уксусного ангидрида в присутствии каталитических добавок серной кислоты, ацетата марганца и бромида калия протекает преимущественно с образованием 4-ААБДА (67%). В реакционной массе также обнаружены 4-ААБА (20%) и 4ацетиламинобензилбромид (ААББ) (2%), при исчерпывающем окислении 4-ААТ в системе накапливается 4ацетиламинобензойная кислота (4-ААБК). Аналогичные данные получены 3-AAT, при окислении В случае озонирования 2-AAT селективность окисления метильной группе ПО ниже (выводы). что, несколько вероятно, связано со стерическим

Рис. 1. Кинетика окисления 4-ААТ озоном в уксусном ангидриде в присутствии марганецбромидного катализатора при 20°С.[4-ААТ]₀=0,4; [Mn(OAc)₂]₀=0,1; [KBr]₀=0,1; [H₂SO₄]₀=1,2; [O₃]₀= 4,8·10⁻⁴ моль·л⁻¹. 1-(4-ААТ);2-(4-ААБДА);3-(4-ААБА); 4-(4-ААБК); 5-(4-ААББ); 6-[Mn²⁺Br[•]].С- концентрация, моль·л⁻¹; t – время реакции, мин.

эффектом заместителей.

На селективность и соотношение продуктов окисления существенно влияет состав марганецбромидного катализатора (табл.1). количественный Максимальные выход ААБДА и селективность окисления ААТ достигаются при мольном соотношении $[Mn(OAc)_2]_0$:[KBr]₀ = 1:1 (исходные концентрации ацетата марганца и бромида калия 0,1 моль.л⁻¹), дальнейшее увеличение концентрации КВг не приводит к существенным изменениям (табл.1). Отмечена линейная зависимость между $lgr - lg[Mn^{2+}]$ и $lg[Br^{-}]$, порядок по катализатору близок к (1) (рис.2). Более высокая скорость и селективность окисления по метильной группе в присутствии бромида калия объясняется тем, что скорость инициирования селективного окисления ААТ в реакции с Mn²⁺ Br' (реакция 5) почти в три раза превышает скорость инициирования ацетатом марганца (реакция 4) (табл. 2). При этом, достижение высокой селективности окисления наблюдается при оптимальной концентрации марганца марганецбромилном снижении В катализаторе на 40% (табл. 1).

$[Mn(OAc)_2]_0$,	[KBr] _{o,}	Выход, %			
моль·л ⁻¹	моль·л ⁻¹	2-ААБДА	2-ААБА		
0.14	_	17.0	52.0		
0.10	0.04	22.0	46.2		
0.10	0.08	41.3	28.0		
0.10	0.10	56.0	17.0		
0.10	0.12	54.0	17.1		
0.10	0.14	52.1	16.9		

Таблица 1- Окисление 2-ААТ в присутствии марганецбромидного катализатора различного состава (усл. см. выволы)

Скорость и селективность окисления ААТ до ААБДА зависят от

температуры: с ростом температуры суммарная скорость окисления увеличивается, селективность а окисления метильной группе по образованием ААБА И ААБДА снижается (табл. 3). На первый взгляд, найденная зависимость противоречит экспериментальным данным, В соответствии с которыми при общей скорость тенденции росту к окисления (реакция 5) селективного растет быстрее, чем скорость озонолиза 19) =38.4; (реакция (E_5) $E_{19} = 24.3$ кДж∙моль⁻¹, табл. 2). Однако кинетические исследования взаимодействия продуктами озона с реакции показали, полученные что закономерности действительно

Рис.2. Зависимость скорости окисления 3-ААТ от концентрации ацетата марганца – 1; субстрата – 2; бромида калия – 3; озона – 4 при 20°С.г – скорость реакции, моль (л.с)⁻¹ могут иметь место, поскольку зависимость скорости окисления от температуры растет в ряду: $r_{17} > r_{16} > r_5$ ($E_{17} = 51.5$; $E_{16} = 44.5$; $E_5 = 38.4$ кДж·моль⁻¹, (табл. 2)).

(усл. см. выводы)					
Номер		К ^б , л·(моль·с) ⁻¹		F	r 20°C
реак-	Реакция	20°C	40°C	Е , кЛжмон ⁻¹	1,
ции				кджиоль	MOHE (H.C)
(3)	$O_3 + Mn^{2+}Br^{-}$	20.30±2.00	55.00±5,50	26.1±2.2	$8.1 \cdot 10^{-4}$
(19)	$4-AAT+O_3$	0.59 ± 0.05	0.82±0,05	24.3±2.0	$0.9 \cdot 10^{-4}$
(4)	$4-AAT + Mn^{3+}$	$10.00 \cdot 10^{-3}$	$19.52 \cdot 10^{-3}$	26.1±2.2	$5.6 \cdot 10^{-4}$
(5)	$4-AAT + Mn^{2+}Br^{\bullet}$	$3.10 \cdot 10^{-2}$	$12.10 \cdot 10^{-2}$	38.4±3.6	$12.4 \cdot 10^{-4}$
(6)	$ArCH_2^{\bullet} + O_2$	$4.7 \cdot 10^9$			$1.3 \cdot 10^2$
(7)	$ArCH_2O_2^{\bullet} + ArCH_3$	2.3			$3.2 \cdot 10^{-6}$
(8)	$ArCH_2O_2^{\bullet} + Mn^{2+}Br^{-}$	10^{2}			$3.5 \cdot 10^{-5}$
(9)	$ArCH_2O_2^{\bullet} + O_3$	10^{2}			$1.4 \cdot 10^{-7}$
(12)	$2\text{ArCH}_2\text{O}_2^{\bullet}$	10^{8}			$12.4 \cdot 10^{-4}$
(13)	$ArCH_2O^{\bullet} + Mn^{2+}Br^{-}$	10^{3}			$3.5 \cdot 10^{-4}$
(15)	$2\text{ArCH}_2\text{O}_2^{\bullet}$	10^{8}			$12.4 \cdot 10^{-4}$
(16)	$4-AABA + Mn^{2+}Br^{\bullet}$	$9.21 \cdot 10^{-3}$	31.34.10-3	44.5±4.0	$3.7 \cdot 10^{-4}$
(17)	4-AAБДA +Mn ²⁺ Br•	$4.92 \cdot 10^{-3}$	$1\overline{3.28\cdot10^{-3}}$	51.5±5.0	$2.0 \cdot 10^{-4}$

Таблица 2- Кинетические параметры реакций каталитического цикла^а

Примечание: а – скорость реакции, определенная по данным рис. $1 - 9.5 \cdot 10^{-4}$ моль $(\pi \cdot c)^{-1}$.

Примечание: б – К₂₀; К₃; К₄; К₅; К₁₆; К₁₇ – рассчитаны по данным авторов; значение К₆ взято для метильного радикала [4]; К₉ – для реакции CH₃O₂• + O₃ [5]; К₇; К₈; К₁₂ и К₁₅ взяты для реакции толуола с кобальтом [6] с корректировкой на окислительно-восстановительный потенциал Mn²⁺ [7]; К₁₃ = 10К₈ с учетом более высокой реакционной способности алкоксильного радикала [7].

Концентрацию ацетиламинопероксидного радикала в расчетах оценивали исходя из условий стационарных концентраций реагирующих частиц.

 $K_5 [ArCH_3][Mn^{2+}Br^{\bullet}] = K_{12}[ArCH_2O_2^{\bullet}]^2$

откуда

$$[ArCH_2O_2^{\bullet}] = (K_5 [ArCH_3][Mn^{2+}Br^{\bullet}])/K_{12}$$

Таблица 3- Влияние температуры на селективность и скорость реакции окисления соединения 3-ААТ (усл. см. выводы)

		Продукты реакц		
Т, °С	r·10 ⁴ , моль·(л·с) ⁻¹	3-ААБДА	3-ААБА	Суммарная селективность, %
10	7.5	0.272	0.068	86.5
20	8.6	0.274	0.070	87.9
25	10.1	0.256	0.067	80.8
30	13.6	0.203	0.060	65.8
35	17.2	0.120	0.046	41.5

В соответствии с полученными кинетическими данными, а также общими реакций окисления, катализируемых представлениями 0 механизме металлбромидными катализаторами [3, 8-10],рассмотрим результаты кинетических исследований классической цепной В рамках схемы неразветвленной реакции:

$$Mn^{2+} + Br^{-} \rightarrow Mn^{2+} Br^{-}$$
(1)

$$Mn^{2+} + O_3 + H^+ \rightarrow Mn^{3+} + HO^{\bullet} + O_2$$
(2)

$$Mn^{2+}Br^{-} + O_3 + H^+ \rightarrow (Mn^{3+}Br^{-}) \leftrightarrow Mn^{2+}Br^{\bullet} + HO^{\bullet} + O_2$$
(3)

$$ArCH_3 + Mn^{3+} \rightarrow ArCH_2^{\bullet} + Mn^{2+} + H^{+}$$
(4)

$$\operatorname{ArCH}_{3} + \operatorname{Mn}^{2+}\operatorname{Br}^{\bullet} \to \operatorname{ArCH}_{2}^{\bullet} + \operatorname{Mn}^{2+}\operatorname{Br}^{-} + \operatorname{H}^{+}$$
(5)

$$\operatorname{ArCH}_{2}O_{2}^{\bullet} + \operatorname{Mn}^{2+}\operatorname{Br}^{-} + \operatorname{H}^{+} \to \operatorname{ArCH}_{2}O_{2}\operatorname{H} + \operatorname{Mn}^{2+}\operatorname{Br}^{\bullet}$$

$$(7)$$

$$ArCH_2O_2^{\bullet} + O_2 \rightarrow ArCH_2O_2^{\bullet} + 2O_2$$
(6)

$$rCH_{\circ}O_{\circ}H \rightarrow ArCH_{\circ}O^{\bullet} \pm HO^{\bullet}$$
(10)

$$\operatorname{ArCH}_{2}\operatorname{O}_{2}\operatorname{H} + \operatorname{Mn}^{2+}\operatorname{Br}^{-} \to \operatorname{ArCH}_{2}\operatorname{O}^{-} + \operatorname{Mn}^{2+}\operatorname{Br}^{\bullet} + \operatorname{HO}^{\bullet}$$
(11)

$$\operatorname{ArCH}_{2}\operatorname{O}_{2}^{\bullet} \to 2\operatorname{ArCH}_{2}\operatorname{O}^{\bullet} + \operatorname{O}_{2}$$
(12)

$$\operatorname{ArCH}_{2}O^{\bullet} + \operatorname{Mn}^{2+}\operatorname{Br}^{-} \to \operatorname{ArCH}_{2}O^{-} + \operatorname{Mn}^{2+}\operatorname{Br}^{\bullet}$$
(13)

$$ArCH_2O^- + CH_3 - C = O \rightarrow ArCH_2OAc$$
(14)

$$2 ArCH_2O_2^{\bullet} \rightarrow ArCH_2OH + ArCHO + O_2$$
(15)

$$\operatorname{ArCH}_{2}\operatorname{OAc} + \operatorname{Mn}^{2+}\operatorname{Br}^{\bullet} \to \operatorname{ArCH}^{\bullet}\operatorname{OAc} + \operatorname{Mn}^{2}\operatorname{Br}^{-} + \operatorname{H}^{+}$$
(16)

$$ArCH(OAc)_2 + Mn^{2+}Br^{\bullet} \rightarrow ArC^{\bullet}(OAc)_2 + Mn^{2+}Br^{-} + H^+$$
(17)

$$Ac_2O + H^+ \rightarrow CH_3 - C^+ = O + AcOH$$
 (18)

$$ArCH_3 + O_3 \rightarrow$$
озониды (19)

$$Br^{-} + O_3 + H^+ \rightarrow Br^{\bullet} + HO_3^{\bullet}$$
(20)

$$Br^{\bullet} + Br^{\bullet} \to Br_2 \tag{21}$$

$$ArCH_2^{\bullet} + Br_2 \rightarrow ArCH_2Br + Br^{\bullet}$$
(22)

В отсутствие ионов брома активной формой катализатора является частица Mn^{3+} (реакция2), которая вовлекает в окисление AAT по метильной группе с образованием ацетиламинобензильного радикала (реакция 4). Введение в систему ионов брома приводит к образованию более активного марганецбромидного катализатора (реакции 1 и 3). При соотношении [Mn(II)]:[Br] = 1:1 ААТ вовлекается в окисление по реакции (5). В условиях, когда в озоновоздушной смеси $[O_2] >> [O_3] \approx 22$, образующиеся ацетиламинобензильные радикалы ацетиламино-пероксидные радикалы трансформируются В (реакция 6). дальнейшим превращением которых в рамках рассматриваемой схемы возможно при условии: $r_i = r_t << r_p$, т.е. при длине цепи $v = r_{onbit} / r_i >> 1$. Однако оценочные расчеты показывают, что в условиях опытов эта зависимость не соблюдается: r_i(r 5) = $r_t(r_{12}) >> r_p(r_7; r_8; r_9)$ (табл.2), а длина цепи $v = r_p / r_i = 3.5 \cdot 10^{-4} / 12.4 \cdot 10^{-4} =$ 0.28. Скорее всего, в присутствии марганецбромидного катализатора окисление ААТ развивается по ионно-радикальному нецепному механизму, в соответствие с которым продукты окисления, в основном, образуются в результате гибели ацетиламинопероксидных радикалов.

Гибель ацетиламинопероксидных радикалов может проходить преимущественно по реакции (12), поскольку реакция (15) предполагает параллельное образование ААБА и ААБДА, что противоречит экспериментальным данным. По-видимому, образующиеся в клетке растворителя алкоксильные радикалы в условиях эксперимента выходят в объем (реакция12) [7], где с высокой скоростью реагируют с восстановленной формой катализатора (реакция13) с образованием продуктов реакции ($K_{13}/K_8 \approx 10$ [7]). В целом процесс, очевидно, развивается по схеме реакций (6–12–13–14), но на стадии образования ААБА не останавливается, а продолжается вплоть до образования ААБДА и ААБК [(16,18) и далее – аналогично схеме реакций (6–12–13–14)]. Образование ААББ, вероятно, обусловлено протеканием реакций (20-22).

4. Выводы

Из выше изложенного следует, что при окислении ААТ озоном в присутствии марганецбромидного катализатора высокая селективность окисления по метильной группе достигается при соизмеримых концентрациях катализатора и субстрата. Ниже приведено окисление ААТ озоновоздушной смесью в уксусном ангидриде в присутствии марганецбромидного катализатора при 20°C: $[O_3]_0 = 4.2 \cdot 10^{-4}$; $[(I)]_0 = 0.4$; $[Mn(OAc)_2]_0 = 0.1$; $[KBr]_0 = 0.1$; $[H_2SO_4]_0 = 1,2$ моль π^{-1} ; $V_{p} = 0,01$ л.

тиолица ч Выход продуктов окноления				
Соединение	Выход продуктов окисления, %			
	ААБДА	ААБА	ААБК	
2-AAT	56.0	18.0	следы	
3-AAT	65.7	18.6	1.6	
4-AAT	67.0	20.0	2.0	

Таблица 4 - Выход продуктов окисления

Окисление протекает по ионно-радикальному нецепному механизму, включающим следующую последовательность реакций: (5) – (6) – (12) – (13) – (14) – (17). Материальный баланс процесса с учетом этих реакций приводит к итоговому уравнению:

 $ArCH_3 + Mn^{2+} Br^- + O_3 \rightarrow ArCH_2O^- + Mn^{2+} Br^{\bullet} + HO^{\bullet} + 1/2O_2$ (23) которое соответствует наблюдаемым в эксперименте первым порядкам по исходным компонентам (рис.2):

 $\mathbf{r} = \mathbf{K}_{\mathbf{9}\mathbf{0}} [\mathbf{A}\mathbf{c}\mathbf{O}\mathbf{A}\mathbf{r}\mathbf{C}\mathbf{H}_{\mathbf{3}}]_{\mathbf{0}} [\mathbf{M}\mathbf{n}^{2+}\mathbf{B}\mathbf{r}^{-}]_{\mathbf{0}} [\mathbf{O}_{\mathbf{3}}]_{\mathbf{0}}$ (24)

Список литературы: 1. Галстян А.Г. Окиснення метилбензолів озоном в оцтовому ангідриді [Текст] / А.Г. Галстян, І.А. Зьома, А.С. Головченко // Матеріали I Української конференції «Реакції окиснення. Наука і технологія». – Рубіжне: ІХТ СНУ ім. В.Даля, 2010. – С.93-95.2. Галстян А.Г. 4-Амінобензальдегід. Одержання каталітичним окисненням 4-амінотолуолу озоном [Текст] / А.Г. Галстян, І.А. Зьома, Г.А. Галстян, Т.М. Галстян // Хімічна промисловість України. – 2011. – Т.103, №2. – С. 30-33.3. Захаров И.В. Кобальтбромидный катализ окисления органических соединений [Текст] / И.В.Захаров, Ю.В.Галетий, В.А. Адамян // Кинетика и катализ. – 1988. – Т.29, № 5. – С.1072–1077.4. Денисов Е.Т. Механизм жидкофазного окисления кислородсодержащих соединений [Текст] / Е.Т. Денисов, Н.И. Мицкевич, В.Е. Агабеков. -Минск: Наука и техника, 1975. – 334с.5. Галстян Г. А. Озон и его реакции с ароматическими соединениями в жидкой фазе [Текст] / Г. А. Галстян, Н. Ф.Тюпало, С. Д. Разумовский. – Луганськ : ВУНУ, 2004. – 272 с. 6. Захаров И.В. Механизм и параметры окисления алкилароматических углеводородов в присутствии ионов кобальта и брома [Текст] / / *И.В.Захаров, Ю.В. Галетий* // Нефтехимия.– 1978.– Т.18, № 4.– С.615–621.7. Денисов *Е.Т.*Константы скорости гомолитических жидкофазных реакций [Текст] / *Е.Т. Денисов* - М.: Наука, 1971. - 711с.8. Бухаркина Т.В. Кинетика окисления толуола в уксусной кислоте солями Со(III) и Mn(III) в присутствии бромида калия [Текст] / *Т.В. Бухаркина, Н.Д. Гавриленко, Н.Г. Дигуров, Н.А. Князева* // Кинетика и катализ. – 1978. – Т.19, №2. – С.506-510.9. Белецкая И. П. Окисление алкилароматических углеводородов солями переходных металлов [Текст] / И. П. Белецкая, Д. И. Махоньков // Успехи химии. – 1981. – Т. 50, № 6. – С. 1007–1045.10. Эмануэль *Н. М.* Проблемы селективного жидкофазного окисления [Текст] / Н.М. Эмануэль // Нефтехимия. – 1978. – Т. 18, № 4. – С. 485–518.

Поступила в редколлегию 11.06.2012

УДК 547.497.6:547.584

В.В. ШТАМБУРГ, канд. хим. наук, ст. преп., НТУ «ХПИ», Харьков, **В.Г. ШТАМБУРГ**, док. хим. наук, проф., НТУ «ХПИ», Харьков, ГВУЗ «УГХТУ», Днепропетровск, **А.Е. ШИШКО**, студ., НТУ «ХПИ», Харьков

НОВЫЙ КАТАЛИЗАТОР МЕЖФАЗНОГО ПЕРЕНОСА ДЛЯ СИНТЕЗА ТРИАЛКИЛОРТОФОРМИАТОВ

Дибромід 1,8-біс(N-аміно-N,N-диметиламоній)-3,6-діоксаоктану виявися ефективним каталізатором міжфазного переносу в синтезі триалкілортоформіатів з хлороформу, спирту та NaOH у гетерофазній системі.

Дибромид 1,8-бис(N-амино-N,N-диметиламмоний)-3,6-диоксаоктана проявил себя в качестве эффективного катализатора фазового переноса в реакциях получения триалкилортоформиатов из хлороформа, спирта и NaOH в гетерофазной системе.

It was found that the 1,8-bis(N-amino-N,N-dimethylammonium)-3,6-dioxaoctane dibromide was effective interphase transfer catalyst for the syntheses of trialkylorthoformates from cloroform, alcohol and NaOH in heterophase system.

Синтез триалкилортоформиатов из хлороформа, спирта и щелочи в гетерофазной системе является одним из самых экономичных и простых способов получения этих труднодоступных соединений [1-3]. Поскольку используемые реагенты находятся в разных фазах, для осуществления между ними взаимодействия необходимо использование катализатора фазового переноса (КФП). В качестве последних могут применяться как стандартные КФП – краун-эфиры и четвертичные аммониевые соли [2,3], так и новые типы КФП подандной природы, а,ω-бис-(диалкиламино)олигооксаалканы [1] и бромиды а,ω-бис-(N,N,N-триалкиламмоний)олигооксаалканов [2,3].

Недавно нами был описан синтез нового поданда данного типа, дибромида 1,8-бис(N-амино-N,Nдиметиламмоний)-3,6диоксаоктана **1** [4], синтезированного

