Список литературы: 1. Кириченко А.Ф., Матюшенко Н.В. Уравнение поверхности арочных зубьев цилиндрических передач Новикова ДЛЗ, нарезанных резцовой головкой // Вестник ХГПУ: Сб. научн. трудов. – Харьков, 1999. – №50. – С.118-127. 2. Кириченко А.Ф., Матюшенко Н.В. Условие существования физического контакта в цилиндрических передачах Новикова ДЛЗ с арочной формой зубьев // Вестник НТУ "ХПИ": Сб. научн. трудов. Тем. вып. "Проблемы механического привода". - Харьков, 2006. – №22. – С.139-146. 3. Дыгало А.И., Демковский И.П., Матюшенко Н.В. Экстремальная теорема об определении точек контакта в цилиндрических передачах Новикова ДЛЗ с арочной формой зубьев // Вестник НТУ "ХПИ": Сб. научн. трудов. Тем. вып. "Проблемы механического привода". - Харьков, 2008. -№29. – Č.40-44.

Поступила в редколлегию 11.03.2013

Рисунок 4 – Арочный зуб с циклоидальной формой

УЛК 621.833+515.2

Арочные зубья с циклоидальной продольной формой / Н.В. Матюшенко, В.А. Бережной, А.В. Федченко // Вісник НТУ "ХПІ". Серія: Проблеми механічного приводу. – Х.: НТУ "ХПІ". - 2013. - №40(1013). - С.75-79. - Бібліогр.: 3 назв.

В даній статті отримано рівняння поверхні зубів циліндричних передач Новікова ДЛЗ з циклоїдальною подовжньою формою, що нарізаних різцевою головкою.

Ключові слова: арочні зуб'я, циліндрична передача, зачеплення Новікова, циклоїда.

An equation of the cycloidal-arc tooth's surface of Novikov's cylindrical gearing with two action lines is found in the present note by the duplex spread blade method.

Keywords: arched points, cylindrical transmission, cylindrical gearing by Novikov's, cycloid.

УДК 621.01.833

Х.Д. МУСТАФАЕВ, к.т.н., докторант каф. металловедения и механики машин АзАСУ, Баку, Азербайджан

ДИНАМИКА РАЗГОНА ЭЛЕКТРОМЕХАНИЧЕСКОГО ПРИВОДА СТОЛА ТЕХНОЛОГИЧЕСКИХ МАШИН

В работе исследуется влияние конструктивных элементов, возбуждающих сил, сил трения, механической характеристики двигателя на динамику разгона электропривода стола технологических машин.

Ключевые слова: привод, динамика, разгон, точность, машина.

Введение. Актуальность работы. Точность перестановки стола технологических машин, в частности металлорежущих станков, относительно инструмента или наоборот имеет важное значение в технике. Например, при обработке отверстии в сверлильных станках точное межосевое расстояние обеспечивается методом точной координатной перестановки стола. Возникает вопрос, при каких режимах работы обеспечивается достаточно точное межосевое расстояние и сравнительно большая производительность станка.

Точность перестановки стола из одной позиции в другую непосредственно зависит от динамических свойства привода и от характера движущего момента, моментов инерции движущихся масс, величины трения в направляющих, системы управлении и т.д. [1]

Цель работы. В данной работе сделана попытка рассмотреть динамику разгона электромеханического привода стола*.

Рисунок 1 – Экспериментальная установка: 1 – мотор-редуктор; 2 – шпоночная муфта; 3 – датчик крутящего момента ТВ2; 4 – ходовой винт; 5 – конечный переключатель; 6 – стол; 7 – датчик измерения усилий U2B; 8 – ограничитель перемещения; 9 – датчик перемещения WA-500; 10 – стол-подставка; 11 – соединительные кабели; 12 – Гуантум^X; 13 – ноутбук

Содержание исследований. На рисунке 1 показана экспериментальная установка электромеханического привода стола. Как видно из этого рисунка, привод состоит из большого числа сосредоточенных (ротор электродвигателя, соединительные муфты, шестерни и т.п.) и распределенных масс.

На рисунке 2 показана кинематическая схема электромеханического привода стола. Стол проводиться в движение от асинхронного мотора редуктора 1, датчика крутя-

щего момента, шпоночной муфты и ходового валика. Движения стола туда и обратно управляется двумя датчиками-переключателями.

Рисунок 2 - Кинематическая схема электромеханического привода стола

На рисунке 3 привод приведен к двухмассовой модели.

При включении электродвигателя в движение приходит масса с момента инерции J_1 . Масса с моментом инерции J_2 приходит в движение только тогда, когда упругая деформация звеньев будет соответствовать полной величине сопротивления и будут выбраны все зазоры в приводе. Движение привода стола разделено на два этапа. На первом этапе в течение времени от t=0 до $t=t_1$ в движении находится масса с

^{*}Электромеханический привод стола спроектирован и испытан под руководством д.т.н., профессора Х.С. Самидова и испытан совместно с докторантом Х.Д. Мустафаевым.

моментом инерции J_1 , а на втором этапе в течение времени от $t=t_1$ до $t=t_2$ в движении будут обе массы. На первом этапе уравнение движения массы J_1 получит вид:

$$J_1 \ddot{\varphi}_1 + \beta \dot{\varphi}_1 + c \varphi_1 = M_{\mathcal{A}} , \qquad (1)$$

где ϕ_1 — угловая координата движения; J_1 — момент инерции; β — коэффициент затухания колебания системы, *с* — приведенная жесткость привода, $M_{\rm A}$ — момент электродвигателя.

Рисунок 3 – Динамическая модель электропривода стола

Электрический вращающий момент, действующий на неподвижный ротор электродвигателя в первый этап, после включения в сеть, вычисляется по формуле [10]

$$M_{\mathcal{A}} = M_H \Big[1 + e^{-\lambda_2 t} - \Big(e^{-\lambda_2 t} \cos(\omega t - \varphi) + e^{-\lambda_2 t} \cos(\omega t + \varphi) \Big) / \cos \varphi \Big], \qquad (2)$$

где $M_{\rm H}$ – номинальный пусковой момент электродвигателя; λ_1 и λ_2 – коэффициенты затухания колебаний в электрической системе двигателя, ω – синхронная угловая скорость электродвигателя, соѕф – коэффициент мощности.

Учитывая выражение (2), уравнение (1) запишем в виде

$$\ddot{\varphi} + 2\delta\dot{\varphi} + k^{2}\varphi = M_{H}/J_{1}[1 + e^{-\lambda_{2}t} - (e^{-\lambda_{2}t}\cos(\omega t - \varphi) + e^{-\lambda_{2}t}\cos(\omega t + \varphi))/\cos\varphi], \quad (3)$$

rge $2\delta = \beta/J_{1}; k^{2} = C/J_{1}.$

Решение уравнения 3 слагается из общего решения однородного, соответствующего данному, и частного решения. Решение уравнения 3 без правой части имеет вид

$$\varphi_1 = e^{-\sigma t} \left(c_1 \cos pt + c_2 \sin pt \right), \tag{4}$$

где $p^2 = \delta^2 - k^2$, c_1 и c_2 – произвольные постоянные. Частное решение уравнения (3) запишем так:

$$\varphi_{2} = M_{q} + M_{d} e^{-\lambda_{2t}} + e^{-\lambda_{1t}} M_{H} [A\cos(\omega t - \varphi) + B\sin(\omega t - \varphi)] + e^{\lambda_{2t}} M_{H} [D\cos(\omega t + \varphi) + N\sin(\omega t + \varphi)],$$
(5)

где A, B, D и N – произвольные постоянные.

Выражение (5) два раза дифференцируем, подставим в уравнение (3) и, приравнивая значения соответствующих членов, получим:

$$A = \frac{\lambda_1^2 - \omega^2 - 2\delta\lambda_1 + k^2}{J_1 \cos \varphi [4\omega^2 (\delta - \lambda_1)^2 + (\lambda_1^2 - \omega^2 - 2\delta\lambda_1 + k^2)^2]};$$

$$B = (2\omega(\delta - \lambda_1)) / (J_1 \cos \varphi [4\omega^2 (\delta - \lambda_1)^2 + (\lambda_1^2 - \omega^2 - 2\lambda_1 + k^2)^2]);$$

$$D = \frac{\lambda_2^2 - \omega^2 - 2\delta\lambda_2 + k^2}{J_1 \cos \varphi [4\omega^2 (\delta - \lambda_2)^2 + (\lambda_2^2 - \omega^2 - 2\lambda_2 + k^2)^2]};$$

$$N = (2\omega(\delta - \lambda_2)) / (J_1 \cos \varphi [4\omega^2 (\delta - \lambda_2)^2 + (\lambda_2^2 - \omega^2 - 2\lambda_2 + k^2)^2]);$$

$$M_1 = M_H / J_1 (\lambda_2^2 - 2\lambda_2 + k^2); M_q = M_H / J_1 k^2.$$
 (6)

Следовательно, общее решение уравнения (3) $\phi = \phi_1 + \phi_2$ будет

$$\varphi = e^{-\sigma t} \left(c_1 \cos pt + c_2 \sin pt \right) + M_H / J_1 k^2 + M_H / J_1 (\lambda_2^2 - 2\lambda_2 + k^2) - \frac{M_H e^{-\lambda_{1t}} [\lambda_1^2 - \omega^2 - 2\lambda_1 + k^2] \cos(\omega t - \varphi) + 2\omega(\delta - \lambda_1) \sin(\omega t - \varphi)}{J_1 \cos \varphi [4\omega^2 (\delta - \lambda_1)^2 + (\lambda_1^2 - \omega^2 - 2\lambda_1 + k^2)^2]} - \frac{M_H e^{-\lambda_{2t}} [\lambda_1^2 - \omega^2 - 2\lambda_2 + k^2] \cos(\omega t - \varphi) + 2\omega(\delta - \lambda_2) \sin(\omega t - \varphi)}{J_1 \cos \varphi [4\omega^2 (\delta - \lambda_2)^2 + (\lambda_2^2 - \omega^2 - 2\lambda_2 + k^2)^2]}.$$
(7)

Используя начальные условия t=0, $\phi=0$, $\dot{\phi}=0$, найдем значения произвольных постоянных C_1 и C_2 ,

$$C_{1} = M_{H} / J_{1}k^{2} - M_{H} / J_{1}(\lambda_{2}^{2} - 2\lambda_{2} + k^{2}) + \\ + \frac{M_{H}[(\lambda_{1}^{2} - \omega^{2} - 2\lambda_{1} + k^{2})\cos\varphi - 2\omega(\delta - \lambda_{1})\sin\varphi]}{J_{1}\cos\varphi[4\omega^{2}(\delta - \lambda_{1})^{2} + (\lambda_{1}^{2} - \omega^{2} - 2\lambda_{1} + k^{2})^{2}]} + \\ + \frac{M_{H}[(\lambda_{2}^{2} - \omega^{2} - 2\lambda_{2} + k^{2})\cos\varphi + 2\omega(\delta - \lambda_{2})\sin\varphi]}{J_{1}\cos\varphi[4\omega^{2}(\delta - \lambda_{2})^{2} + (\lambda_{2}^{2} - \omega^{2} - 2\lambda_{2} + k^{2})^{2}]}.$$
(8)
$$C_{2} = \delta M_{H} / J_{1}pk^{2} - M_{H}(\delta - \lambda_{2}) / J_{1}p(\lambda_{2}^{2} - 2\lambda_{2} + k^{2}) + \\ + \frac{M_{H}[(\lambda_{1}^{2} - \omega^{2} - 2\lambda_{1} + k^{2})(\delta\cos\varphi - \lambda_{1}\cos\varphi + \sin\varphi)]}{J_{1}p\cos\varphi[4\omega^{2}(\delta - \lambda_{1})^{2} + (\lambda_{1}^{2} - \omega^{2} - 2\lambda_{1} + k^{2})^{2}]} - \\ - \frac{M_{H}[2\omega(\delta - \lambda_{1})\delta\sin\varphi - \lambda_{1}\sin\varphi - \omega\cos\varphi]}{J_{1}\cos\varphi[4\omega^{2}(\delta - \lambda_{1})^{2} + (\lambda_{2}^{2} - \omega^{2} - 2\lambda_{2} + k^{2})^{2}]} + \\ + \frac{M_{H}[(\lambda_{2}^{2} - \omega^{2} - 2\lambda_{2} + k^{2})(\delta\cos\varphi - \omega\sin\varphi) + 2\omega(\delta - \lambda_{2})(\delta\sin\varphi - \lambda_{2}\sin\varphi + \omega\cos\varphi]}{J_{1}\cos\varphi[4\omega^{2}(\delta - \lambda_{2})^{2} + (\lambda_{2}^{2} - \omega^{2} - 2\lambda_{2} + k^{2})^{2}]} .$$
(9)

Таким образом, упругий момент $M_y=c\cdot \varphi$ в кинематической цепи электропривода стола при разгоне определяется выражением

$$M_{y} = M_{H}c = \left\{ e^{-\delta t} \left(c_{1} \cos pt + c_{2} \sin pt \right) + e^{-\lambda_{1}t} \left[A \cos(\omega t - \varphi) \right] + B \sin(\omega t - \varphi) \right] + e^{-\lambda_{2}t} \left[M \cos(\omega t + \varphi) + N \sin(\omega t + \varphi) \right] + e^{-\lambda_{2}t} / J_{1} (\lambda_{2}^{2} - 2\delta\lambda_{2} + k^{2})^{2} + 1/J_{1} k^{2} \right\}.$$
(10)

Как видно из выражения (10), первый этап разгона электропривода стола является аллергическим движением. Первые три слагаемые представляют собой затухающие колебания, возникающие вследствие наличия возбуждающей силы. Они имеют различные амплитуды, различные фазы и различные частоты колебания. Эти слагаемые содержат периодическую функцию с периодом $\tau_1=2\pi/p$; периодом $\tau_2=\tau_3=2\pi/\omega$; где p – частота собственных колебаний системы.

Вследствие наличия множителей $e^{-\delta t}, e^{-\lambda_1 t}, e^{-\lambda_2 t}$ эти слагаемые постепенно убывают и вызванные в начале разгона колебания постепенно убывают. Темпы затухания колебаний зависят от величины параметров δ , λ_1 и λ_2 которые выражаются $\delta_1=\beta/2J_1$, $\lambda_1=Z_S/X_S$ и $\lambda_2=Z_P/X_P$, где Z_S , X_S , Z_P и X_P – соответствующие активные и индуктивные сопротивления статора и ротора электродвигателя.

Пренебрегая затуханием в механической и электрической частях систе-

мы ($\delta = \lambda_1 = \lambda_2$) можно определить наибольший крутящий момент в упругой системе привода.

При этом выражение упругого момента примет вид

$$M_{y} = 2M_{H} \left(1 - \cos kt - \frac{\cos \omega t}{1 - \omega^{2} / k^{2}} + \frac{\cos kt}{1 - \omega^{2} / k^{2}} \right).$$
(11)

Как видно из последней формулы, момент упругой силы, возникающий при пуске электродвигателя, возрастает с увеличением частоты собственных колебании привода. С этой точки зрения целесообразно уменьшить жесткость системы за счет введения в кинематическую цепь упругих элементов.

Как было отмечено выше, масса с моментом инерции M_y придет в движение только тогда, когда момент упругой системы привода стола будет равен величине сопротивления, т.е.

$$M_C = C\varphi. \tag{12}$$

На этапе совместного движения масс с моментами инерции J_1 и J_2 и (рисунок 2) управления движения будут

$$J_{1}\ddot{\varphi}_{1} + \beta(\dot{\varphi}_{1} - \dot{\varphi}_{2}) + c(\varphi_{1} - \varphi_{2}) = M_{g}; J_{2}\ddot{\varphi}_{2} - \beta(\dot{\varphi}_{1} - \dot{\varphi}_{2}) - c(\varphi_{1} - \varphi_{2}) = -M_{C}.$$
(13)

Механическая характеристика асинхронного электродвигателя, шунтового двигателя постоянного тока, система генератор-двигатель и даже гидравлического двигателя изменяется по линейному закону [3, 4, 5, 6],

$$M_g = (M_H / S_H) (1 - \dot{\varphi}_1 / \omega).$$
 (14)

где *М_и* – номинальный момент электродвигателя, *S_и* – номинальное скольжение.

Подставляя (14) в уравнение (13) и принимая обозначения $a=\beta_1/J_1$; $b=M_{H'}(J_1S_{H^{(3)}}); d=C/J_1; h=\beta/J_2; z=C/J_2; M_1=M_{H'}(J_1S_{H}); M_2=M_C/J_2$ будем иметь:

$$\ddot{\varphi}_{1} + a(\dot{\varphi}_{1} - \dot{\varphi}_{2}) + \beta \dot{\varphi}_{1} + d(\varphi_{1} - \varphi_{2}) = M_{1};$$

$$\ddot{\varphi}_{2} + h(\dot{\varphi}_{1} - \dot{\varphi}_{2}) - z(\varphi_{1} - \varphi_{2}) = -M_{2}.$$
(15)

Решение уравнения (15) без правой части, можно принять в виде

$$\Psi_1 = D \cdot e^{st}; \ \Psi_2 = N \cdot e^{st}. \tag{16}$$

где *D* и *N* – произвольные постоянные.

Подставив (16) в однородное уравнение без правой части (15) получим:

$$D(S^{2} + as + bs + d) - N(as + d) = 0; \quad -D(hs + z) + N(S^{2} + hs + z) = 0.$$
(17)

Как известно, уравнение (17) даст решения, отличное от нуля, если равен нулю определитель

$$\frac{(S^2 + as + bs + d)}{(hs + z)} \frac{(as + d)}{(S^2 + hs + z)} = 0.$$
 (18)

Отсюда получим

$$S^{4} + (a+b+h)S^{4} + (d+bh+z)S^{2} + bzs = 0.$$
 (19)

Решая это уравнение, найдем

ISSN 2079-0791. Вісник НТУ "ХПІ". 2013. № 40 (1013)

$$S_1 = 0: S_3 = -n + ip; \quad S_1 = l: S_4 = -n - ip.$$
 (20)

Подставляя S в однородное уравнение и принимая обозначения

$$D_1 = N_1; \quad D_2 = \gamma_2 N_2; \quad D_3 = \gamma_3 N_3; \quad D_4 = \gamma_4 N_4,$$
 (21)

получим общее решение уравнения (15) без правой части:

$$\psi_1 = N_1 + \gamma_2 N_2 + e^{-lt} + e^{-nt} (\gamma_3 N_3 \cos pt + \gamma_4 N_4 \sin pt);$$

$$\psi_1 = N_1 + N_2 e^{-lt} + e^{-nt} (N_2 \cos pt + N_3 \sin pt);$$
(22)

$$\psi_2 = N_1 + N_2 e^{t} + e^{t} (N_3 \cos pt + N_4 \sin pt).$$

Частное решение уравнения (15) будем искать в виде

$$\psi_3 = \alpha_1 t + \beta_1; \ \psi_4 = \alpha_2 t + \beta_2. \tag{23}$$

Подставка выражения (23) в уравнение (15) приводит к равенствам

$$a(\alpha_1 - \alpha_2) + ba_1 + d[(a_1 - a_2)t + \beta_1 - \beta_2] = M_1;$$

- h(\alpha_1 - \alpha_2) - z[(a_1 - a_2)t + \beta_1 - \beta_2] = M. (24)

Отсюда получаем для определения коэффициентов $\alpha_1, \alpha_2, \beta_1, \beta_2$ уравнения:

$$d(\alpha_1 - \alpha_2) = 0; \ da_1 + d(\beta_1 - \beta_2) = M_1; \ z(\beta_1 - \beta_2) = -M_2.$$
(25)

Из этих уравнений получаем

$$a_1 = a_2 = (M_1 z - dM_2) / bz; \ \beta_1 = M_2 / z.$$
 (26)

Таким образом, частное решение уравняется (15) будет:

$$\psi_3 = 1/b_z \cdot (M_1 z - dM_2)t + M_2/z; \ \psi_4 = 1/b_z \cdot (M_1 z - dM_2)t.$$
(27)

Общие решения уравнения (15) $\phi_1 = \psi_1 + \psi_3$, $\phi_2 = \psi_2 + \psi_4$ будет иметь вид:

$$\varphi_{1} = N_{1} + Y_{2}N_{2}e^{-lt} + e^{-nt}(Y_{3}N_{3}\cos pt + Y_{4}N_{4}\sin pt) + 1/b_{z} \cdot (M_{1}z - dM_{2})t + M_{2}/z;$$

$$\varphi_{2} = N_{1} + N_{2} + e^{-lt} + e^{-nt}(N_{3}\cos pt + N_{4}\sin pt) + 1/b_{z} \cdot (M_{1}z - dM_{2})t.$$
(28)

В соответствии с принятыми начальными условиями для второго этапа разгона электропривода стола *t*=0, $\phi_1 = \phi_0$, $\dot{\phi}_1 = \omega_0$, $\dot{\phi}_2 = 0$.

Запишем уравнения для определения произвольных постоянных N1, N2, N3, N4:

$$N_{1} + \gamma_{2}N_{2} + \gamma_{3}N_{3} + M_{2}/z = \varphi_{0};$$

$$N_{1} + N_{2} + N_{3} = 0;$$

$$-l\gamma_{2}N_{2} + p\gamma_{4}N_{4} - n\gamma_{3}N_{3} + (1/bz)(M_{1}z - dM_{2}) = \omega_{0};$$

$$-lN_{2} + pN_{4} - nN_{3} + (1/bz)(M_{1}z - dM_{2}) = 0.$$
(29)

Решая систему уравнений (29), получим:

$$N_{1} = -N_{2} - N_{3}; \quad N_{2} = \frac{(1 - \gamma_{3}) \left[\frac{1}{bz} (M_{1}z - dM_{2}) (1 - \gamma_{4}\omega_{0}) \right] + n(\gamma_{4} - \gamma_{3}) \left(\frac{M_{2}}{7} - \varphi_{0} \right)}{l(\gamma_{4} - \gamma_{2}) (\gamma_{3} - 1) + n(\gamma_{3} - \gamma_{4}) (\gamma_{2} - 1)};$$

$$N_{3} = \frac{N_{2} (1 - \gamma_{2}) - \frac{M_{2}}{z} + \varphi_{0}}{\gamma_{3} - 1}; \quad N_{4} = \frac{nN_{3} + lN_{2} - \frac{1}{bz} (M_{1}z - dM_{2})}{P}. \quad (30)$$

Как видно из решений уравнений (7) и (28), разгон электропривода зависит от многих факторов, таких как моментов инерции ведущих и ведомых деталей, моментов движущих сил и сил сопротивления, жесткости конструктивных элементов, скорости движения, характеристики движущего момента и т.п.

Из-за объема статьи здесь не проводятся подробный анализ действия всех факторов на характер протекания разгона привода, лишь приводятся некоторые фрагменты из них.

Результаты численных решений уравнений (7), (28), при следующих значения параметров привода

$$J_1 = 5 \cdot 10^{-4} \,\mathrm{H} \cdot \mathrm{M} \cdot \mathrm{c}^2; \ C = 710 \,\mathrm{H/pa}; \ M_C = 1,0 \,\mathrm{H} \cdot \mathrm{M}; J_2 = 5 \cdot 10^{-4} \,\mathrm{H} \cdot \mathrm{M} \cdot \mathrm{c}^2; \ \beta = 0,1; \ \omega = 157 \,\mathrm{c}^{-1}$$
(31)

представлены на рисунке 4. Как видно из графика $\varphi_2=t_2(t)$ вследствие упругости конструктивных элементов привода, масса с моментом инерции J_2 вступает в свое движение позднее, чем масса с моментом инерции J_1 . Вследствие этого в начале разгона в системе происходит скручивание. Масса с моментом инерции J_2 вступает в свое движение с большим ускорением (скачком), чем масса J_1 ,

вследствие чего через определенное время в точке "В" угловые скорости этих масс становятся равными друг другу. Затем угловая скорость ₀₀₂ массы с инерцией J_2 становится больше, чем скорость ω_1 массы с моментом инерции J₁. Следовательно, в приводе происходит раскручивание. Причем это раскручивание продолжается до тех пор, пока угловая скорость массы с моментом инерции J_2 не станет равной угловой скорости массы с моментом инерции J_1 . В дальнейшем привод стола двигается равномерно, т.е. заканчивается разгон.

Рисунок4 – Кривые изменения угла поворота, угловой скорости и углового ускорения привода стола

Найдя разницу между значениями углов ϕ_1 и ϕ_2 в точке "Д" (в конце разгона) можно определить динамической ошибки $\Delta \phi$ и момента упругости силы $M_{\text{упр}} = c \cdot \Delta \phi$ электропривода стола.

В таблице 1 приведены расчеты угла поворота, скорости и ускорения массы с моментами инерции J_1 и J_2 , а также разницы этих величин $\varphi_1 - \varphi_2 = \Delta \varphi$,

$$J_1 = 6,3 \cdot 10^{-4} \,\mathrm{H} \cdot \mathrm{M} \cdot \mathrm{c}^2; \ C = 710 \,\mathrm{H/pad}; \ M_C = 0,2 \mathrm{H} \cdot \mathrm{M};$$
$$J_2 = 11,5 \cdot 10^{-4} \,\mathrm{H} \cdot \mathrm{M} \cdot \mathrm{c}^2; \ \beta = 0,1; \ \omega = 157 \mathrm{c}^{-1}.$$

В таблице 2 даны результаты расчета этих же величин в тех же значениях параметров, но при величине момента сопротивления M_c =1,0H·м. Сравнивая результаты расчетов, приведенных в таблицах 1 и 2 можно убедиться, что при увеличении момента сопротивления в системе увеличивается путь и время разгона.

1403 157 -1 1 5 10^{-4} 1 2 1 5 10^{-4} 1 2 2 7 100 1 1 1 1 1 1 1 2									
$ω = 157c^{-1}; J_1 = 5 \cdot 10^{-4} \text{H} \cdot \text{M} \cdot c^2; J_2 = 5 \cdot 10^{-4} \text{H} \cdot \text{M} \cdot c^2; C = 710 \text{H/pag}; \beta = 0,1; M_C = 2,0 \text{H} \cdot \text{M}$									
<i>t</i> , c	ϕ_1 , рад	ф 2, рад	$\Delta \phi$, рад	$\dot{\phi}_1, c^{-1}$	$\dot{\phi}_2,c^{-1}$	$\Delta \dot{\phi}, c^{-1}$	$\ddot{\phi}_1, c^{-2}$	$\ddot{\phi}_2, c^{-2}$	$\Delta \ddot{\phi}, c^{-2}$
0,001	0,008	0,003	0,005	20,25	14,23	6,02	12504	17232	-4728
0,002	0,036	0,028	0,008	31,16	31,15	0,010	12097	14828	-2731
0,003	0,071	0,062	0,009	43,99	44,57	-0,58	11507	12591	-1084
0,004	0,124	0,116	0,008	54,71	55,70	-0,099	10682	11058	-378
0,005	0,184	0,176	0,008	65,28	66,95	-0,67	9705	9795	-90,0
0,006	0,253	0,246	0,007	74,70	75,35	-0,65	8744	8735	9,0
0,008	0,423	0,417	0,008	90,00	90,60	-0,60	7102	7050	52
0,01	0,613	0,608	0,005	103,1	103,6	-0,050	5709	5651	58
0,02	1,848	1,847	0,001	137,8	138,0	-0,20	1940	1920	20
0,03	3,297	3,296	0,001	149,7	149,8	-0,1	670	664	6
0,04	4,818	4,817	0,001	153,7	153,7	-0,02	228	226	2
0,06	7,916	7,915	0,001	155,6	155,67	-0,01	25,2	25,0	0,2
0,08	11,03	11,03	0	155,8	155,8	0	3,0	3,0	0
Таблица2 – углы поворота, скорости и ускорения массы с моментами инерции J ₁ и J ₂									
гаолица	2 — углы	поворота	а, скорос	ти и уско	эрения м	ассы с м	оментам	и инерци	и J ₁ и J ₂
$\omega = 157c^{-1}$	$\frac{2 - \text{углы}}{1}; J_1 = 6,3$	<u>поворот</u> 3 · 10 ⁻⁴ H · м	a, cкорос $1 \cdot c^2; J_2 =$	<u>ти и уско</u> =11,5 · 10 ⁻⁴	рения м H·м·c ² ;	C = 710 H	оментам І/рад; β =	и инерци 0,1; <i>M_C</i>	<u>ии J₁ и J₂ = 1,0H · м</u>
$\omega = 157c^{-1}$ t, c	2 - углы ¹ ; $J_1 = 6,3$ $\phi_1, рад$	поворота 3·10 ⁻⁴ H · м φ ₂ , рад	а, скорос ₄·c ² ; <i>J</i> ₂ = ∆φ, рад	ти и уско = 11,5 \cdot 10 ⁻⁴ $\dot{\phi}_1, c^{-1}$	$\dot{\psi}_2, c^{-1}$	accы c м C = 710 H $\Delta \dot{\phi}, c^{-1}$	оментам $I/paд; \beta =$ $\ddot{\phi}_1, c^{-2}$	и инерци 0,1; M_C = $\ddot{\phi}_2, c^{-2}$	$\frac{III J_1 II J_2}{= 1,0H \cdot M}$ $\Delta \ddot{\varphi}, c^{-2}$
$\omega = 157c^{-1}$ <i>t</i> , c 0,001	2 - углы ¹ ; $J_1 = 6,2$ $\phi_1, рад$ 0,014	поворот 3·10 ⁻⁴ H · м ф ₂ , рад 0,006	а, скорос $1 \cdot c^2$; $J_2 = \Delta \phi$, рад 0,008	ти и уско = 11,5 \cdot 10 ⁻⁴ $\dot{\phi}_1$, c ⁻¹ 18,75	рения м $H \cdot M \cdot c^2;$ $\dot{\phi}_2, c^{-1}$ 15,22	ассы с м C = 710 H $\Delta \dot{\phi}, c^{-1}$ 3,53	оментам $I/pад; \beta = $ $\ddot{\phi}_1, c^{-2}$ 11087	и инерци 0,1; M_C $\ddot{\varphi}_2, c^{-2}$ 14724	и J_1 и J_2 = 1,0H · м $\Delta \ddot{\phi}, c^{-2}$ -3637
$\omega = 157c^{-1}$ t, c 0,001 0,002	$\frac{2 - \text{углы}}{1}; J_1 = 6, \tilde{\zeta}$ $\phi_1, \text{ рад}$ 0,014 0,042	поворота 3·10 ⁻⁴ H · м ф ₂ , рад 0,006 0,032	а, скорос $1 \cdot c^2$; $J_2 = \Delta \phi$, рад 0,008 0,01	ти и уско = $11,5 \cdot 10^{-4}$ $\dot{\phi}_1, c^{-1}$ 18,75 29,46	рения м $H \cdot M \cdot c^2;$ $\dot{\phi}_2, c^{-1}$ 15,22 28,50	ассы с м C = 710 H $\Delta \dot{\phi}, c^{-1}$ 3,53 0,96	оментам $I/pад; \beta =$ $\ddot{\phi}_1, c^{-2}$ 11087 10950	и инерци 0,1; M_C $\ddot{\varphi}_2, c^{-2}$ 14724 12511	$\frac{\text{III } J_1 \text{ II } J_2}{\text{AU} J_1 \text{ II } J_2} = 1,0\text{H}\cdot\text{M}$ $\frac{\Delta \ddot{\varphi}, \text{c}^{-2}}{-3637}$ -3637 -1561
$ \begin{array}{c} 1 a 0.141 \\ \omega = 157c^{-1} \\ t, c \\ 0,001 \\ 0,002 \\ 0,003 \\ 0,003 $	$\frac{2 - \text{углы}}{1}; J_1 = 6, $ $\phi_1, \text{ рад}$ 0,014 0,042 0,078	поворота 3·10 ⁻⁴ H · м ф ₂ , рад 0,006 0,032 0,068	а, скорос $4 \cdot c^2$; $J_2 = \Delta \phi$, рад 0,008 0,01 0,01	ти и уско = $11,5 \cdot 10^{-4}$ $\dot{\phi}_1, c^{-1}$ 18,75 29,46 40,01	ррения м $H \cdot M \cdot c^2;$ $\dot{\phi}_2, c^{-1}$ 15,22 28,50 40,11	ассы с м C = 710 H $\Delta \dot{\phi}, c^{-1}$ 3,53 0,96 -0,10	оментам $I/pад; \beta =$ $\ddot{\phi}_1, c^{-2}$ <u>11087</u> <u>10950</u> 10372	и инерци 0,1; M_C $\ddot{\varphi}_2, c^{-2}$ 14724 12511 10995	ни J_1 и J_2 = 1,0H · м $\Delta \ddot{\varphi}, c^{-2}$ -3637 -1561 -623
$\begin{array}{c} \alpha = 157c^{-1}\\ t, c\\ 0,001\\ 0,002\\ 0,003\\ 0,004 \end{array}$	$2 - \text{углы}^{-1}; J_1 = 6, 2$ $\phi_1, \text{ рад}$ 0,014 0,042 0,078 0,112	поворот 3·10 ⁻⁴ H · м ф ₂ , рад 0,006 0,032 0,068 0,111	а, скорос $4 \cdot c^2$; $J_2 = \Delta \phi$, рад 0,008 0,01 0,01 0,001	$\frac{\dot{\phi}_{1}, c^{-1}}{\dot{\phi}_{1}, c^{-1}}$ $\frac{\dot{\phi}_{1}, c^{-1}}{18,75}$ $\frac{18,75}{29,46}$ $\frac{40,01}{50,30}$	ррения м $H \cdot M \cdot c^2$; $\dot{\phi}_2, c^{-1}$ 15,22 28,50 40,11 50,80	ассы с м C = 710 H $\Delta \dot{\phi}, c^{-1}$ 3,53 0,96 -0,10 -0,50	оментам [/рад; β = $\ddot{\phi}_1, c^{-2}$ 11087 10950 10372 9549	и инерци $0,1; M_C = \ddot{\phi}_2, c^{-2}$ 14724 12511 10995 9752	ни J_1 и J_2 = 1,0H · м $\Delta \ddot{\phi}, c^{-2}$ -3637 -1561 -623 -203
$\begin{array}{c} 1 additional for a constraint of the second seco$	$\begin{array}{c} 2 - \text{углы} \\ \hline \\ & \\ & \\ & \\ \hline \\ & \\ & \\ & \\ & \\ &$	поворот: 3·10 ⁻⁴ H · м Ф ₂ , рад 0,006 0,032 0,068 0,111 0,166	a, ckopoc $A \cdot c^2$; $J_2 = \Delta \phi$, pag 0,008 0,01 0,001 0,001 0,008	$\frac{\dot{\phi}_{1}, c^{-1}}{\dot{\phi}_{1}, c^{-1}}$ $\frac{\dot{\phi}_{1}, c^{-1}}{18,75}$ $\frac{29,46}{40,01}$ $\frac{40,01}{50,30}$ $59,49$	ррения м $\dot{\Psi}$ H · м · c ² ; $\dot{\phi}_2, c^{-1}$ 15,22 28,50 40,11 50,80 60,08	ассы с м C = 710 H $\Delta \dot{\phi}, c^{-1}$ 3,53 0,96 -0,10 -0,50 -0,59	оментам $I/pад; \beta =$ $\ddot{\phi}_1, c^{-2}$ 11087 10950 10372 9549 8721	и инерци $0,1; M_C = \ddot{\phi}_2, c^{-2}$ 14724 12511 10995 9752 8765	$\begin{array}{r} {}_{\rm HI} J_1 \ {\rm u} \ J_2 \\ = 1,0 {\rm H} \cdot {\rm M} \\ \Delta \ddot{\phi}, {\rm c}^{-2} \\ \hline -3637 \\ -1561 \\ \hline -623 \\ \hline -203 \\ \hline -44 \end{array}$
$\begin{array}{c} \omega = 157c^{-}\\ t, c\\ 0,001\\ 0,002\\ 0,003\\ 0,004\\ 0,005\\ 0,006\end{array}$	$\begin{array}{c} 2 - \mathbf{y} \Gamma \mathbf{h} \mathbf{h} \\ \mathbf{y}_1 = \mathbf{h}, \\ \mathbf{\phi}_1, \mathbf{p} \mathbf{a} \mathbf{h} \\ 0, 0 14 \\ 0, 042 \\ 0, 078 \\ 0, 112 \\ 0, 174 \\ 0, 236 \end{array}$	поворот: 3·10 ⁻⁴ H · м φ ₂ , рад 0,006 0,032 0,068 0,111 0,166 0,229	a, ckopoc $A \cdot c^2$; $J_2 = \Delta \phi$, pag 0,008 0,01 0,01 0,001 0,008 0,007		ррения м $\dot{\Psi}$ H · м · c ² ; $\dot{\phi}_2, c^{-1}$ 15,22 28,50 40,11 50,80 60,08 58,55	ассы с м C = 710 H $\Delta \dot{\phi}, c^{-1}$ 3,53 0,96 -0,10 -0,50 -0,59 -0,60	оментам $I/pад; \beta =$ $\ddot{\phi}_1, c^{-2}$ 11087 10950 10372 9549 8721 7923	и инерци $0,1; M_C = \ddot{\phi}_2, c^{-2}$ 14724 12511 10995 9752 8765 7903	ни J_1 и J_2 = 1,0H · м $\Delta \ddot{\phi}, c^{-2}$ -3637 -1561 -623 -203 -203 -44 20
$\begin{array}{l} \hline aonuta \\ \hline \omega = 157c^{-} \\ \hline t, c \\ \hline 0,001 \\ 0,002 \\ \hline 0,003 \\ 0,004 \\ \hline 0,005 \\ \hline 0,006 \\ \hline 0,008 \end{array}$	$\begin{array}{c} 2 - \mathbf{y} \mathbf{\Gamma} \mathbf{\Lambda} \mathbf{B} \\ \mathbf{f}_1 = 6, \\ \mathbf{f}_1 = 6, \\ \mathbf{f}_1 = 6, \\ 0, 0 14 \\ 0, 0 14 \\ 0, 0 14 \\ 0, 0 12 \\ 0, 0 17 \\ 0, 174 \\ 0, 236 \\ 0, 389 \end{array}$	$\begin{array}{c} \hline \text{поворот.}\\ \hline \textbf{3} \cdot 10^{-4} \text{ H} \cdot \textbf{x}\\ \hline \phi_2, \text{ pag}\\ \hline 0,006\\ \hline 0,032\\ \hline 0,068\\ \hline 0,111\\ \hline 0,166\\ \hline 0,229\\ \hline 0,382\\ \end{array}$	a, ckopoc $A \cdot c^2$; $J_2 = \Delta \phi$, pag 0,008 0,011 0,001 0,001 0,008 0,007 0,007	$ \frac{11,5 \cdot 10^{-4}}{\phi_1,c^{-1}} $	ррения м $\dot{\Psi} + \dot{W} \cdot c^2;$ $\dot{\phi}_2, c^{-1}$ 15,22 28,50 40,11 50,80 60,08 58,55 82,75	ассы с м C = 710 H $\Delta \dot{\phi}, c^{-1}$ 3,53 0,96 -0,10 -0,50 -0,59 -0,60 -0,56	оментам $I/pад; \beta =$ $\ddot{\phi}_1, c^{-2}$ 11087 10950 10372 9549 8721 7923 6544	и инерци $0,1; M_C$: $\ddot{\varphi}_2, c^{-2}$ 14724 12511 10995 9752 8765 7903 6499	$ \frac{J_1 \text{ и } J_2}{\Delta \ddot{\varphi}, c^{-2}} $ = 1,0H · м $\Delta \ddot{\varphi}, c^{-2}$ -3637 -1561 -623 -203 -44 20 45
$\begin{array}{l} \text{abinuta} \\ \omega = 157c^{-} \\ \hline t, c \\ 0,001 \\ 0,002 \\ 0,003 \\ 0,004 \\ 0,005 \\ 0,006 \\ 0,008 \\ 0,01 \end{array}$	$\begin{array}{c} 2 - \text{углы} \\ \hline \\ 4 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7$	$\begin{array}{c} \hline \text{поворот.}\\ \hline \textbf{0} \\ \hline \textbf{0} \hline \textbf{0} \\ \hline \textbf{0} \\ \hline \textbf{0} \hline \textbf{0} \hline \textbf{0} \hline \textbf{0} \\ \hline \textbf{0} \hline \textbf$	a, ckopoc $A \cdot c^2$; $J_2 = \Delta \phi$, pag 0,008 0,011 0,001 0,001 0,008 0,007 0,007 0,006		ррения м $\dot{\Psi} + \dot{W} \cdot c^2;$ $\dot{\phi}_2, c^{-1}$ 15,22 28,50 40,11 50,80 60,08 58,55 82,75 94,56	ассы с м C = 710 H $\Delta \dot{\phi}, c^{-1}$ 3,53 0,96 -0,10 -0,50 -0,59 -0,60 -0,56 -0,33	оментам $I/pад; \beta = {\phi_1, c^{-2}}$ 11087 10950 10372 9549 8721 7923 6544 5376	и инерци $0,1; M_C$: $\ddot{\varphi}_2, c^{-2}$ 14724 12511 10995 9752 8765 7903 6499 5335	$ \frac{HI J_1 H J_2}{\Delta \ddot{\phi}, c^{-2}} $ = 1,0H · M $\Delta \ddot{\phi}, c^{-2}$ -3637 -1561 -623 -203 -44 200 45 41
$\begin{array}{l} \hline ao , a \\ \hline ao , a \\ \hline ao , a \\ \hline c \\ \hline t, c \\ \hline 0,001 \\ \hline 0,002 \\ \hline 0,003 \\ \hline 0,004 \\ \hline 0,005 \\ \hline 0,006 \\ \hline 0,008 \\ \hline 0,001 \\ \hline 0,002 \end{array}$	(2 - yr) $J_1 = 6,$ (ϕ_1, pad) (0,014) (0,042) (0,078) (0,174) (0,236) (0,389) (0,565) (1,706)	$\begin{array}{c} \hline \text{HOBOPOT} \\ \hline \text{HOBOPOT} \\ \hline 3\cdot 10^{-4} \text{H} \cdot \text{N} \\ \hline \phi_2, \text{ pad} \\ \hline 0,006 \\ 0,032 \\ \hline 0,068 \\ 0,111 \\ 0,166 \\ 0,229 \\ 0,382 \\ 0,559 \\ \hline 1,703 \end{array}$	a, ckopoc $A \cdot c^2$; $J_2 = \Delta \phi$, pag 0,008 0,01 0,001 0,001 0,000 0,007 0,007 0,006 0,003		ррения м $H \cdot M \cdot c^2$; ϕ_2, c^{-1} 15,22 28,50 40,11 50,80 60,08 58,55 82,75 94,56 128,60	ассы с м C = 710 H $\Delta \dot{\phi}, c^{-1}$ 3,53 0,96 -0,10 -0,50 -0,59 -0,60 -0,56 -0,33 -0,20	оментам $I/pад; \beta =$ $\ddot{\phi}_1, c^{-2}$ 11087 10950 10372 9549 8721 7923 6544 5376 2018	и инерци $0,1; M_C$: $\ddot{\varphi}_2, c^{-2}$ 14724 12511 10995 9752 8765 7903 6499 5335 2002	$\begin{array}{c} \text{пи } J_1 \text{ и } J_2 \\ = 1,0\text{H} \cdot \text{м} \\ \hline \Delta \ddot{\phi}, \text{c}^{-2} \\ \hline -3637 \\ -1561 \\ \hline -623 \\ -203 \\ \hline -203 \\ -244 \\ 200 \\ 45 \\ 411 \\ 16 \end{array}$
$\begin{array}{l} \textbf{a} \textbf{o} \textbf{n} \textbf{n} \textbf{a} \textbf{a} \\ \textbf{\omega} = 157c^{-1} \\ \textbf{t}, c \\ \textbf{0}, 001 \\ \textbf{0}, 002 \\ \textbf{0}, 003 \\ \textbf{0}, 004 \\ \textbf{0}, 005 \\ \textbf{0}, 006 \\ \textbf{0}, 006 \\ \textbf{0}, 006 \\ \textbf{0}, 0008 \\ \textbf{0}, 011 \\ \textbf{0}, 002 \\ \textbf{0}, 003 \end{array}$	(2 - yr) $J_1 = 6,$ (ϕ_1, pad) (0, 014) (0, 042) (0, 078) (0, 174) (0, 236) (0, 389) (0, 565) (1, 706) (3, 064)	$\begin{array}{c} \hline \text{поворот:}\\ \hline 0^{-4}\text{H}\cdot\mathbf{n}\\ \hline \phi_2, \text{ pad}\\ \hline 0,006\\ \hline 0,032\\ \hline 0,068\\ \hline 0,111\\ \hline 0,166\\ \hline 0,229\\ \hline 0,382\\ \hline 0,559\\ \hline 1,703\\ \hline 3,062\\ \end{array}$	a, ckopoc $A \cdot c^2$; $J_2 = \Delta \phi$, pag 0,008 0,01 0,001 0,001 0,000 0,007 0,007 0,007 0,006 0,003 0,002		ррения м $H \cdot M \cdot c^2$; $\dot{\phi}_2, c^{-1}$ 15,22 28,50 40,11 50,80 60,08 58,55 82,75 94,56 128,6 149,3	ассы с м C = 710 H $\Delta \dot{\phi}, c^{-1}$ 3,53 0,96 -0,10 -0,50 -0,59 -0,60 -0,53 -0,20 -0,10	оментам $I/paд; \beta =$ $\ddot{\phi}_1, c^{-2}$ 11087 10950 10372 9549 8721 7923 6544 5376 2018 759	и инерци $0,1; M_C:$ $\ddot{\phi}_2, c^{-2}$ 14724 12511 10995 9752 8765 7903 6499 5335 2002 753	пи J_1 и J_2 = 1,0H · м $\Delta \ddot{\phi}, c^{-2}$ -3637 -1561 -623 -623 -203 -244 200 45 41 166 6
$\begin{array}{l} \text{aonula}\\ \omega = 157c^{-}\\ \hline t, c\\ 0,001\\ 0,002\\ 0,003\\ 0,004\\ 0,005\\ 0,006\\ 0,008\\ 0,011\\ 0,002\\ 0,003\\ 0,04 \end{array}$	$2 - yrnin , J_1 = 6, \phi_1, pad0,0140,0420,0780,1120,1740,2360,3890,5651,7063,0644,505$	$\begin{array}{c} \hline \text{поворот:}\\ \hline \textbf{0} \\ \hline \textbf{0} \hline \textbf{0} \\ \hline \textbf{0} \hline \textbf{0} \\ \hline \textbf{0} \hline \textbf{0} \hline \textbf{0} \\ \hline \textbf{0} $	a, ckopoc $A \cdot c^2$; $J_2 = \Delta \phi$, pag 0,008 0,01 0,001 0,001 0,000 0,007 0,007 0,007 0,007 0,006 0,003 0,002 0,002	ти и уска = 11,5 \cdot 10 ⁻⁴ $\dot{\phi}_1, c^{-1}$ 18,75 29,46 40,01 50,30 59,49 67,95 82,19 94,23 128,4 149,2 152,1	ррения м $H \cdot M \cdot c^2$; $\dot{\phi}_2, c^{-1}$ 15,22 28,50 40,11 50,80 60,08 58,55 82,75 94,56 128,66 149,3 152,1	ассы с м C = 710 H $\Delta \dot{\phi}, c^{-1}$ 3,53 0,96 -0,10 -0,50 -0,59 -0,60 -0,56 -0,33 -0,20 -0,10 0	оментам $I/paд; \beta =$ $\ddot{\phi}_1, c^{-2}$ 11087 10950 10372 9549 8721 7923 6544 5376 2018 759 284	и инерци $0,1; M_C:$ $\ddot{\phi}_2, c^{-2}$ 14724 12511 10995 9752 8765 7903 6499 5335 2002 753 282	$\begin{array}{c} \text{пи } J_1 \text{ и } J_2 \\ = 1,0\text{H} \cdot \text{м} \\ \hline \Delta \ddot{\phi}, \text{c}^{-2} \\ \hline -3637 \\ -1561 \\ \hline -623 \\ -203 \\ \hline -44 \\ 200 \\ 455 \\ 411 \\ \hline 16 \\ 6 \\ 2 \end{array}$
$\begin{array}{l} \text{aonula}\\ \omega = 157c^{-}\\ \hline t, c\\ 0,001\\ 0,002\\ 0,003\\ 0,004\\ 0,005\\ 0,006\\ 0,008\\ 0,01\\ 0,002\\ 0,003\\ 0,004\\ 0,006\end{array}$	$2 - yrnai , J_1 = 6, \phi_1, pad0,0140,0420,0780,1120,1740,2360,3890,5651,7063,0644,5057,460$	$\begin{array}{c} \hline \text{поворот:}\\ \hline \textbf{0} \\ \hline \textbf{0} \hline \textbf{0} \\ \hline \textbf{0} \hline \textbf{0} \\ \hline \textbf{0} \hline \textbf{0} \hline \textbf{0} \\ \hline \textbf{0} \hline $	a, ckopoc $A \cdot c^2$; $J_2 = \Delta \phi$, pag 0,008 0,01 0,001 0,001 0,0007 0,0007 0,0007 0,0007 0,0007 0,0002 0,002 0,002 0,002	ти и уска = 11,5 \cdot 10 ⁻⁴ $\dot{\phi}_1, c^{-1}$ 18,75 29,46 40,01 50,30 59,49 67,95 82,19 94,23 128,4 149,22 152,1 153,6	ррения м $H \cdot M \cdot c^2$; $\dot{\phi}_2, c^{-1}$ 15,22 28,50 40,11 50,80 60,08 58,55 82,75 94,56 128,66 149,3 152,1 153,6	ассы с м C = 710 H $\Delta \dot{\phi}, c^{-1}$ 3,53 0,96 -0,10 -0,50 -0,59 -0,60 -0,56 -0,33 -0,20 -0,10 0 0	оментам $I/paд; \beta =$ $\ddot{\phi}_1, c^{-2}$ 11087 10950 10372 9549 8721 7923 6544 5376 2018 759 284 39,83	и инерци $0,1; M_C:$ $\ddot{\phi}_2, c^{-2}$ 14724 12511 10995 9752 8765 7903 6499 5335 2002 753 282 39,51	$\begin{array}{c} \text{III } J_1 \text{ II } J_2 \\ = 1,0\text{H} \cdot \text{M} \\ \hline \Delta \ddot{\phi}, \text{c}^{-2} \\ \hline -3637 \\ -1561 \\ \hline -623 \\ -203 \\ \hline -44 \\ 200 \\ \hline 45 \\ 411 \\ \hline 16 \\ \hline 6 \\ 2 \\ 0,32 \end{array}$
$\begin{array}{l} \text{aonula}\\ \omega = 157c^{-}\\ \hline t, c\\ 0,001\\ 0,002\\ 0,003\\ 0,004\\ 0,005\\ 0,006\\ 0,008\\ 0,01\\ 0,002\\ 0,003\\ 0,004\\ 0,006\\ 0,008\\ 0,01\\ 0,006\\ 0,008\\$	$2 - yrnin , J_1 = 6, \phi_1, pad0,0140,0420,0780,1120,1740,2360,3890,5651,7063,0644,5057,46010,44$	$\begin{array}{c} \hline \text{поворот:}\\ \hline 0 = 10^{-4} \text{H} \cdot \text{N}\\ \hline \phi_2, \text{ pad}\\ \hline 0,006\\ \hline 0,032\\ \hline 0,068\\ \hline 0,111\\ \hline 0,166\\ \hline 0,229\\ \hline 0,382\\ \hline 0,559\\ \hline 1,703\\ \hline 3,062\\ \hline 4,503\\ \hline 7,458\\ \hline 10,43\\ \end{array}$	a, ckopoc $A \cdot c^2$; $J_2 = \Delta \phi$, pag 0,008 0,01 0,001 0,001 0,007 0,007 0,007 0,007 0,007 0,007 0,0002 0,002 0,002 0,001	$\begin{array}{c} \hline \text{ти и ускс}\\ = 11,5 \cdot 10^{-4}\\ \hline \dot{\phi}_1, c^{-1}\\ 18,75\\ 29,46\\ 40,01\\ 50,30\\ 59,49\\ 67,95\\ 82,19\\ 94,23\\ 128,4\\ 149,2\\ 152,1\\ 153,6\\ 154,6\\ \end{array}$	ррения м $H \cdot M \cdot c^2$; $\dot{\phi}_2, c^{-1}$ 15,22 28,50 40,11 50,80 60,08 58,55 82,75 94,56 128,66 149,3 152,1 153,6 154,6	ассы с м C = 710 H $\Delta \dot{\phi}, c^{-1}$ 3,53 0,96 -0,10 -0,50 -0,59 -0,60 -0,56 -0,33 -0,20 -0,10 0 0 0 0	оментам $I/paд; \beta =$ $\ddot{\phi}_1, c^{-2}$ 11087 10950 10372 9549 8721 7923 6544 5376 2018 759 284 39,83 5,73	и инерци $0,1; M_C:$ $\ddot{\phi}_2, c^{-2}$ 14724 12511 10995 9752 8765 7903 6499 5335 2002 753 282 39,51 5,68	$\begin{array}{c} \text{пи } J_1 \text{ и } J_2 \\ = 1,0\text{H} \cdot \text{м} \\ \hline \Delta \ddot{\phi}, \text{c}^{-2} \\ \hline -3637 \\ -1561 \\ \hline -623 \\ \hline -203 \\ \hline -44 \\ 200 \\ \hline 45 \\ 441 \\ \hline 16 \\ \hline 6 \\ 2 \\ 0,32 \\ \hline 0,05 \end{array}$

Тоблица1

Исследования как теоретически, так и экспериментально показывают, что увеличением коэффициента инерционности $J=\hat{J}_2/J_1$ системы при одинаковых значениях остальных параметров привода динамическая ошибка, упругий момент и время разгона электропривода стола увеличиваются. С этой точки зрения при проектировании машин целесообразно стремиться к уменьшению коэффициента инерционности J.

Выволы:

1. Выявлена неравномерность движения электромеханического привода стола при разгоне.

2. Нежесткая механическая характеристика асинхронного электродвигателя, переменная сила сопротивления в системе и упругость звеньев привода стола приводят к увеличению динамической ошибки в системе при разгоне.

3. Для уменьшения динамической ошибки в приводе стола необходимо уменьшить коэффициент инерционности и жесткости системы.

4. Наибольший момент упругой силы, возникающий при разгоне, бывает

на первом этапе разгона. Значение динамического момента в этом случае 4-6 раз превышает значения номинального пускового момента электродвигателя.

Список литературы: 1. Самидов Х.С., Самидов Э.Х. Динамика и оптимальное конструирование мапин. – Баку: Нурлан, 2003. – 622с. 2. Терских В.П. Расчеты кругильных колебаний силовых установок. – Л.: Судпромгиз, 1953-1954. – Т.1 – 259с. – Т.2 – 215с. – Т.3 – 200с. 3. Кудинов В.А. Динамика станков – М.: Машгиз, 1967. – 359с. 4. Ривин Е.И. Динамика приводов станков. – М.: Машиностроение, 1969. – 204с. 5. Никипин Б.В. Расчет динамических характеристик металлорежущих станков. – М.: Машгиз, 1962. – 111с. 6. Левина З.М., Решетов Д.Н. Контактная жесткость машин. – М.: Машиностроение, 1971. – 264с.

Поступила в редколлегию 05.03.2013

УДК 621.01.833

Динамика разгона электромеханического привода стола технологических машин / Х.Д. Мустафаев // Вісник НТУ "ХПІ". Серія: Проблеми механічного приводу. – Х.: НТУ "ХПІ". – 2013. – №40(1013). – С.79-87. – Бібліогр.: 6 назв.

У роботі досліджується вплив конструктивних елементів, збуджуючих сил, сил тертя, механічної характеристики двигуна на динаміку розгону електроприводу стола технологічних машин.

Ключові слова: привід, динаміка, розгін, точність, машина.

In this work analyzed influences of construction elements and anxious forces to dynamic technologic machine. **Keywords:** drive, dynamics, acceleration, accuracy, machine.

УДК 621.833

А.М. НАДЖАФОВ, д.т.н., доцент каф. ДМ И ПТМ АзТУ, Баку, Азербайджан; *А.И. АБДУЛЛАЕВ*, д.т.н., проф., заведующий каф. ДМ И ПТМ АзТУ

О РЕЗУЛЬТАТАХ ПРОМЫШЛЕННОГО ИСПЫТАНИЯ ТРЕХСТУПЕНЧАТОГО ДВУХПОТОЧНОГО ПАКЕТНОГО РЕДУКТОРА СТАНКА-КАЧАЛКИ СКД 3-1,5-710

Представлены результаты промышленного испытания на нефтепромыслах Пираллахы трехступенчатого двухпоточного пакетного редуктора станка-качалки СКД-3-1,5-710.

Ключевые слова: редуктор, нефтепромыслы.

Актуальность задачи. На кафедре "Детали машин и ПТМ" Азербайджанского Технического Университета разработана, изготовлена и испытана принципиально новая конструкция многоступенчатого редуктора на двух валах с цилиндрическими зубчатыми колесами, отличающийся компактностью, малой металлоемкостью, повышенной надежностью и высокими эксплуатационными показателями [1].

По сравнению с классическими многоступенчатыми редукторами пакетные редукторы (ПР) обладают рядом специфических особенностей, определяющих целесообразность их применения как в механизмах тонких и точных приборов, так и тяжелых и мощных современных машинах и приводах.

Редуктор назван пакетным из-за взаимно наложенного расположения его основных конструктивных элементов – зубчатых двухвенцовых блоков. В предлагаемой механической системе промежуточные валы исключаются, а ведущие и ведомые валы используются как оси для последующих ступеней. Основными преимуществами пакетного редуктора по сравнению с современными многоступенчатыми редукторами классического исполнения являются: возможность получения большого передаточного отношения; малые габаритные размеры; более высокий КПД; большая

© А.М. Наджафов, А.І. Абдуллаєв, 2013