бочей) стороне нормального профиля ножки зуба колеса. Тогда, по уравнению поверхности головки зуба колеса, а также положению винтовых проекций н.т.к. $N_{aS}(\overline{N}'_{aS})$, координаты $\overline{N}_{aS\pi}$ ($\overline{N}'_{aS\pi}$) определяются следующим соотношением:

$$\begin{cases} x_{\overline{N}_{aS\pi}} = r_{ab} \cos(\varphi(\alpha_S)) + \gamma_{aS}^*; \\ y_{\overline{N}_{aS\pi}} = r_{ab} \sin(\varphi(\alpha_S)) + \gamma_{aS}^*; \\ z_{\overline{N}_{aS\pi}} = p\gamma_{aS}^*, \end{cases}$$

где $\alpha_S = \alpha_S(\alpha'_S)$ – полярный угол, определяющий положение \overline{N}_{aS} ($\overline{N}_{aS\pi}$) на торцовом сечении зуба рейки. Угол γ^*_{aS} находится как решение (методом простых итераций) уравнения $\gamma = Rr/p^2 \sin(\varphi_0 - \varphi_-\gamma)$, в котором tg $\varphi = y(\alpha_S)/x(\alpha_S)$, $x(\alpha_S)$ и $y(\alpha_S)$ – координаты н.т.к. \overline{N}_{aS} (н.т.к. \overline{N}_{aS}) на рабочей (нерабочей) стороне головки зуба колеса, tg $\varphi_0 = y_0/x_0$, x_0 и y_0 – координаты точки Q пересечения начального цилиндра с рабочей стороной торцового профиля зуба колеса, r_{ab} – радиус контактного цилиндра.

Расстояние $d_{a\pi}$ между точками $\overline{N}_{aS\pi}$ и $\overline{N}'_{aS\pi}$ толщина зуба в нормальном сечении в н.т.к. головки зуба колеса вычисляется по формуле:

$$d_{a\pi} = \sqrt{\left(X_{\overline{N}_{aS\pi}} - X_{\overline{N}_{aS\pi}}\right)^2 + \left(Y_{\overline{N}_{aS\pi}} - Y_{\overline{N}_{aS\pi}}\right)^2} \ .$$

Аналогично рассуждая, находим координаты н.т.к. $\overline{N}_{fS\pi}(\overline{N}'_{fS\pi})$:

$$\begin{cases} x_{\overline{N}_{fS\pi}} = r_{fb} \cos(\varphi(\alpha_S)) + \gamma_{fS}^*; \\ y_{\overline{N}_{fS\pi}} = r_{fb} \sin(\varphi(\alpha_S)) + \gamma_{fS}^*; \\ z_{\overline{N}_{fS\pi}} = p\gamma_{fS}^*, \end{cases}$$

где $\alpha_S = \alpha_{fS}(\alpha'_{fS})$ – полярный угол, определяющий положение $N_{fS}(\overline{N}_{fS})$ на торцовом сечении зуба рейки, γ^*_{fS} – решение уравнения $\gamma = Rr/p^2 \sin(\varphi_0 - \varphi - \gamma)$, в котором $tg\varphi = y(\alpha_S)/x(\alpha_S)$, $x(\alpha_S)$ и $y(\alpha_S)$ – координаты н.т.к. \overline{N}_{fS} (н.т.к. \overline{N}'_{fS}) на рабочей (нерабочей) стороне торцового сечения ножки зуба колеса, r_{fb} – радиус контактного цилиндра.

Тогда, толщина $d_{f\pi}$ нормального сечения в н.т.к. ножки зуба колеса вычисляется по формуле:

На основании разработанного алгоритма построена моделирующая программа TOOTH_5. Пример ее реализации показан на рисунке 3.

Выводы. Разработан алгоритм, позволяющий по заданным параметрам исходного контура фрезы и начальным параметрам зацепления вычислять толщину зуба колеса для цилиндрических передач Новикова с двумя линиями зацепления. Получены первые метрологические характеристики зубьев зацепляющихся колес. Это позволяет улучшить гидродинамические характеристики передачи на стадии проектирования.

Список литературы: 1. Матюшенко Н.В. Моделирование формообразования поверхности зубьев передач Новикова ДЛЗ и его компьютерная реализация // microCAD'97. International Meeting on Information Technology. – Харьков, 1997. – С.190-194. 2. Кириченко А.Ф., Матюшенко Н.В. Условие существования физического контакта в цилиндрических передачах Новикова ДЛЗ с арочной формой зубьев // Вестник НТУ "ХПИ": Сб. научн. трудов. Тем. вып. "Проблемы механического привода". – Харьков, 2006. – №22. – С.139-146. 3. Дыгало А.И., Демковский И.П., Матюшенко Н.В. Экстремальная теорема об определении точек контакта в цилиндрических передачах Новикова ДЛЗ с арочной формой зубьев // Вестник НТУ "ХПИ": Сб. научн. трудов. Тем. вып. "Проблемы механического привода". – Харьков, 2008. – №29. – С.40-44. 4. Беляев А.И. Геометрический расчёт и технология нарезания колёс с арочными зубьями / А.И. Беляев, А.И. Сирицин, Д.А. Сирицин // Вестник машиностроения. – 1999. – №1 – С.3-8. 5. Сызраниев В.Н. Геометрическое исследование способа чистовой обработки арочных зубьев цилиндрических колес резцовыми головками с твердыми пластинами / В.Н. Сызранцев, К.В. Сызранцева, М.Р. Варшавский. – Курган, 1999. – 9с.: 1ил. – рук. – Деп. в ВИНИТИ 17.02.99, №505-В99. 6. Васильев В.М. Геометрия арочных зубьев цилиндрических передач, нарезаемых на экспериментальном зуборезном станке модели E3-67 / B.M.Bacunbee, Р.А. Мацей // Металлорежущие станки: Респ. межвед. научн.-техн. сб. – Киев, 1988. – Вып. 16. – С. 12-20. 7. Мацей Р.А. Уравнения активных поверхностей арочных зубьев цилиндрических зубчатых передач, нарезаемых способом непрерывного деления // Детали машин: Респ. межвед. научн.-техн. сб. - Киев, 1984. -Burn.38. - C.3-11. & V.N. Syzrantsev, Contact load and endurance of cylindrical gearing with arch-shaped teeth / Syzrantsev V.N., Syzrantseva K.V., Varshavsky M.R. / Proceedings of the International Conference on Mechanical Transmissions. 5-9 April 2010, Chongqing, China. - P.425-43.

Поступила (received) 05.02.2014

УДК 621.833

А.А. МУХОВАТЫЙ, к.т.н., доцент каф. "ДВС и машиноведение" ВНУ им. В. Даля, Луганск

НЕЭВОЛЬВЕНТНЫЕ ЦИЛИНДРИЧЕСКИЕ ЗУБЧАТЫЕ ПЕРЕДАЧИ С УЛУЧШЕННЫМИ ПОКАЗАТЕЛЯМИ НАГРУЗОЧНОЙ СПОСОБНОСТИ

В статье разработаны исходные контуры зубьев неэвольвентных цилиндрических зубчатых передач с улучшенными показателями нагрузочной способности, разработана математическая модель сравнительной оценки зубчатых передач по критериям нагрузочной способности таким, как потери мощности в зацеплении, толщина масляного слоя между рабочими поверхностями зубьев, заедания, удельная работа сил трения, износу рабочих поверхностей зубьев, контактной прочности рабочих поверхностей. Установлено, что критерии нагрузочной способности зубчатых передач, полученных с использованием предложенных исходных контуров, существенно выше критериев нагрузочной способности эвольвентных передач.

Ключевые слова: энергоемкость, исходный контур, зубчатая передача, трение, потери, зацепление.

Актуальность задачи. Работоспособность и экономические показатели современных машин в различных отраслях в существенной мере зависят от показателей работоспособности зубчатых приводов. Создание зубчатых передач с улучшенными показателями работоспособности обеспечивает совершенствование не только приводов, но и машин в целом, и это актуально для современного машиностроения. Одним из направлений совершенствования зубчатых приводов является разработка зубчатых передач с улучшенными показателями нагрузочной способности.

© А.А. Муховатый, 2014

Анализ литературы. Энергоемкость зубчатых передач зависит от сил трения в зацеплении [1], которые определяются в основном геометрическими параметрами исходного контура, применяемого для профилирования зубьев зубчатых колес. В последние годы проводятся интенсивные исследования по созданию неэвольвентных зубчатых передач с высокой нагрузочной способностью [1..6], [7].

Однако в этих работах отсутствуют конструкции исходных контуров и данные по оценке критериев работоспособности зубчатых передач, зубья которых спрофилированы с использованием полученных в указанных работах результатов.

Цель статьи. Разработка исходных контуров неэвольвентных зубьев цилиндрических передач с улучшенными показателями нагрузочной способности, которые позволят понизить энергоемкость передач, а также проведен сравнительный анализ оценки критериев работоспособности такой зубчатой передачи.

Материалы и результаты исследований.

1 Исходные контуры. Согласно [7] угол профиля исходного контура, представленного на рисунке 1, обеспечивающего снижение силы трения в зацеплении колес, определяется равенством

$$\varsigma = \varsigma_0 \left(\frac{f_1}{f_{10}} \right)^{\lambda}; \ \lambda = 1 - \bar{f}^{1,67},$$
 (1)

где $\zeta = \sin \alpha$ (α – текущий угол профиля исходного контура); $\zeta_0 = \sin \alpha_{10}$ (α_{10} – угол профиля исходного контура при $f_1 = f_{10}$); f < 1 – коэффициент, который показывает, во сколько раз сила трения в зацеплении зубьев колес с исходным контуром, полученным с использованием (1), меньше силы трения в зацеплении эвольвентной передачи (f принята постоян-

ной в пределах поля зацепления).

(ДП – делительная прямая)

Равенство (1) является решением дифференциального уравнения [7]

$$\varsigma' = \frac{\left(1 - \bar{f}^{1,67}\right)\varsigma}{f_1}.$$
 (2)

Из (1) получаем

$$\bar{f} = \left[-\frac{\ln\left(\frac{\varsigma}{\varsigma_0} \cdot \frac{f_{10}}{f_1}\right)}{\ln\frac{f_1}{f_{10}}} \right]^{0,6} .$$
(3)

Из равенства (3) следует, что значение f зависит от начальных данных f_{10}

и ζ_0 , а также значений ζ и f_1 . Как правило, значения f_1 лежат в пределах $f_{10} \leq f_1 \leq 1$ (f_1 – в долях модуля зацепления), а наибольшее значение α может быть ограничено величинами $26^{\circ} \leq \alpha_{\max} \leq 34^{\circ}$ (из условия обеспечения достаточного коэффициента перекрытия $\varepsilon_{\alpha} \geq 1,2$ и толщины зубьев колес на вершинах $S_{\alpha} \geq 0,2...0,4$). Значения f_{10} можно принять равными f_{10} =0,025...0,1, а α_{10} =5°...25°.

При таких исходных данных f ограничено величинами, определяемыми по графикам на рисунке 2, построенными с использованием равенства (3).

Из анализов рисунка 2 следует, что на значение f наибольшее влияние оказывают α_{10} и f_{10} . При изменении этих величин в указанных пределах f может изменяться от $f \approx 0,6$ до $f \approx 0,95$. Следовательно, с использованием (1) можно синте-

зировать исходные контуры, обеспечивающие снижение сил трения в зацеплении в 1,05...1,5 раза в сравнении с эвольвентными передачами ($\tilde{f} \approx 0,95$ и $\tilde{f} \approx 0,6$). Методика определения геометрических параметров исходного контура изложена в

методика определения геометрических параметров исходного контура изложена в работе [7]. Применим эту методику для определения геометрических параметров

исходного контура при следующих исходных данных: $\alpha_{\text{max}} = 32^{\circ}; \ \alpha_{10} = 15^{\circ}; \ f_{10} = 0.05;$ $f_{1\text{max}}=1$. По графикам определяем соответствующие значения f. Они равны: при $\alpha_{10}=10^{\circ} - \bar{f} \approx 0,75$ при $\alpha_{10}=15^{\circ} - \tilde{f} \approx 0.85$; при $\alpha_{10}=20^{\circ} - \bar{f} \approx 0.91$. Используя равенства (1) и (2) и рекомендации [7], получим уравнения кривых, которыми очерчены профили исходных 🖏 контуров на рисунке 3 в пределах $f_{10} \leq f_1 \leq 1$ (принято $h_{a}^{*} = 1$ при модуле *m*=1мм):

$$\begin{split} f_{2c} &= 1,1076f_1^8 - 5,2540f_1^7 + 10,4130f_1^6 - 11,2280f_1^5 + 7,2390f_1^4 - 2,9640f_1^3 + \\ &\quad + 1,0356f_1^2 + 0,0962f_1 \; (\text{при } \alpha_{10} = 10^\circ, \; \vec{f} \approx 0,79, \; \alpha_{\text{max}} = 33^\circ); \\ f_{2c} &= 1,3493f_1^8 - 6,3860f_1^7 + 12,6170f_1^6 - 13,5330f_1^5 + 8,6420f_1^4 - 3,4707f_1^3 + \\ &\quad + 1,0805f_1^2 + 0,18187f_1 \; (\text{при } \alpha_{10} = 15^\circ, \; \vec{f} \approx 0,85, \; \alpha_{\text{max}} = 31,93116^\circ); \\ f_{2c} &= 1,3400f_1^8 - 6,3350f_1^7 + 12,4920f_1^6 - 13,3600f_1^5 + 8,4840f_1^4 - 3,3672f_1^3 + \\ &\quad + 0,98510f_1^2 + 0,28667f_1 \; (\text{при } \alpha_{10} = 20^\circ, \; \vec{f} \approx 0,91, \; \alpha_{\text{max}} = 31,99385^\circ). \end{split}$$

ISSN 2079-0791. Вісник НТУ "ХПІ". 2014. № 31 (1074)

117

Углы "α" исходных контуров определяются из равенства

 $\operatorname{tg} \alpha = f'_{2c},$

где f'_{2c} — первая производная f_{2c} по f_1 .

В соответствии с рекомендациями [8] утонение зубьев для обеспечения бокового зазора в зацеплении колес принято равным $j_{\Sigma}=0,225m$. Эта величина потребует в дальнейшем уточнения на базе экспериментальных данных.

Профили исходных контуров на участках $-f_{10}^* \le f_1 \le f_{10}^*$ можно очерчивать окружностями [7] или кривыми с уравнениями (4).

Предлагаемый исходный контур с параметрами в таблице 1 имеет участки профиля при $-f_1^* \le f_1 \le f_1^*$, очерченные прямыми линиями с углом профиля равным 15°.

Таблица 1 – Геометрические параметры исходных контуров (размеры в долях модуля)

а, град	h_a^*	h_f^*	с*	ρ*	γ^*_Σ	S_{g1}^*	S_{g2}^*	S_{a1}^*	S_{a2}^*	a^*
15	1	1,17462	0,17462	0,37066	0,0225	1,5483	1,5933	0,58415	0,62915	0,80396

Примечание: утонение зубьев колес для обеспечения бокового зазора в зацеплении.

2 Сравнительная оценка критериев нагрузочной способности зубчатой передачи. Рассмотрим для примера зубчатую передачу с параметрами:

-радиус начального цилиндра шестерни R_1 =10мм;

– радиус начального цилиндра колеса $R_2=10$ мм;

– исходный контур неэвольвентной передачи с $\alpha_{10}{=}15^\circ$ параметры представлены в таблице 1;

-исходный контур эвольвентной передачи с α_э=20°;

 $-E_{np}=2,1\cdot10^{5}$ H/mm²; HB=2500H/mm²;

 $-R_a = 3.2 \cdot 10^{-4}$ MM.

С использованием приведенной выше математической модели оценки критериев нагрузочной способности зубчатых передач получены результаты, представленные в таблице 2.

Из анализа данных таблицы 2 и графиков на рисунке 4 следует, что по всему полю зацепления $0,05 \le f_1 \le 1$ и $-1 \le f_1 \le -0,5$ значения критериев нагрузочной способности зубчатой передачи с зубьями, спрофилированными с применением предложенного исходного контура, значительно выше в сравнении с эвольвентной зубчатой передачей. Действительно, согласно данным таблицы 2 эти критерии имеют значения:

– критерий потерь мощности в зацеплении составляет 0,3...0,89 от критерия потерь в эвольвентном зацеплении;

 – критерий толщины масляного слоя между рабочими поверхностями в 1,1...4,3 раза больше, чем в эвольвентном зацеплении;

- критерий заедания составляет 0,3...0,72 от критерия заедания эвольвентной передачи;

критерий удельной работы сил трения составляет 0,03...0,74 от удельных работ сил трения эвольвентной передачи;

- критерий износа зубьев составляет 0,014...0,88 от критерия износа зубьев эвольвентной передачи;

– критерий контактной прочности зубьев в 1,3...11,0 раз больше, чем критерий контактной прочности эвольвентной передачи.

Таблица 2 – Относительные значения критериев нагрузочной способности

f_1	$\overline{\Delta P}$	$\overline{h_{_{MC}}}$	$\overline{K_3}$	$\overline{dA_1}$	$\overline{dA_2}$	$\overline{h_{u1}}$	$\overline{h_{u2}}$	$\overline{\Theta}$
1,0	0,5389	2,0319	0,3569	0,42395	0,2442	0,3535	0,2036	2,0071
0,9	0,5586	1,9591	0,3778	0,43783	0,2689	0,3693	0,2268	1,9259
0,8	0,5619	2,0036	0,3731	0,42431	0,2749	0,3498	0,2267	2,0035
0,7	0,5839	1,936	0,3949	0,43857	0,303	0,3636	0,2513	1,9421
0,6	0,6085	1,8649	0,4198	0,45567	0,3356	0,3799	0,2797	1,8798
0,5	0,6259	1,8496	0,4319	0,45986	0,3592	0,3781	0,2953	1,8989
0,4	0,649	1,8258	0,4489	0,46953	0,3893	0,3792	0,3145	1,9224
0,3	0,6978	1,7086	0,5001	0,51436	0,4551	0,4164	0,3685	1,8355
0,2	0,7737	1,541	0,5877	0,59794	0,5634	0,4888	0,4606	1,6948
0,1	0,8942	1,3702	0,7244	0,7443	0,7394	0,5973	0,5934	1,5985
0,05	1,0975	1,0936	1,0198	1,0759	1,0962	0,8936	0,9104	1,3129
-0,05	1,0975	1,0936	1,0198	1,0759	1,0962	0,8936	0,9104	1,3129
-0,1	0,8917	1,3792	0,7193	0,7394	0,7339	0,5918	0,5873	1,6122
-0,2	0,7497	1,6396	0,547	0,5605	0,5205	0,444	0,4123	1,8378
-0,3	0,6512	1,9533	0,4276	0,4491	0,3803	0,3393	0,2873	2,1906
-0,4	0,5796	2,2646	0,3479	0,3798	0,2876	0,2739	0,2074	2,5664
-0,5	0,5331	2,4975	0,3014	0,3449	0,2304	0,2415	0,1613	2,8638
-0,6	0,4908	2,7678	0,2598	0,3153	0,1814	0,212	0,122	3,2696
-0,7	0,44	3,2214	0,2104	0,2757	0,1313	0,1722	0,082	4,0483
-0,8	0,3891	3,817	0,1655	0,2387	0,0895	0,1363	0,0511	5,2469
-0,9	0,3486	4,3599	0,1342	0,2177	0,0603	0,1146	0,0317	6,7274
-1.0	0.2865	5,6837	0.0905	0.1753	0.0304	0.0777	0.0135	11.022

Выводы:

1. Разработан исходный контур неэвольвентной зубчатой передачи с улучшенными показателями работоспособности в зацеплении.

2. Проведен сравнительный анализ критериев нагрузочной способности и установлено, что предлагаемые исходные контуры обеспечивают более высокие значения критериев нагрузочной способности зубчатых передач в сравнении с эвольвентными передачами. 1,5

3. Дальнейшее развитие данного направления исследования заключается в оптимизации геометрических параметров исходных контуров и проведении экспериментальных работ. Рик

ISSN 2079-0791. Вісник НТУ "ХПІ". 2014. № 31 (1074)

Список литературы: 1. Шпшов В.П., Носко П.Л., Филь П.В. Теоретические основы синтеза передач запеплением: Моногр. – Луганськ: вид-во СНУ ім. В.Даля, 2006. – 408с. – ISBN 966-590-480-9. 2. Шабанов И.Р. О зубчатой передаче с конхоидальной линией зацепления Надежность и качество зубчатых передач. – НИИ ИНФОРМТЯЖМАШ. 18-67-106, 1967. – С.1-8. 3. Аникин Ю.В. Синусоидальное зацепление – Воронеж: изд-во ВГУ, 1975. – 56с. 4. Бошански М., Токоли П., Ваня Ф., Кожух И. Возможность использования неэвольвентного зацепления в коробках передач сельскохозяйственных машин // Вісник НТУ "ХІІІ" – Харків: НТУ "ХІІІ", 2011. – №29. – С.21-30. – ISSN 2079-0791. 5. Шпшов В.П., Носко П.Л., Муховатый А.А. Высоконагруженные зубчатые передачи // Вісник НТУ "ХІІІ" – Харків: НТУ "ХІІІ", 2011. – №29. – С.21-30. – ISSN 2079-0791. 5. Шпшов В.П., Носко П.Л., Муховатый А.А. Высоконагруженные зубчатые передачи // Вісник НТУ "ХІІІ". – Харків: НТУ "ХІІІ", 2011. – №28. – С.180-186. – ISSN 2079-0791. 6. Протасов Р.В., Устиненко А.В. Исследование коорфициента перекрытия эволютных передач // Вісник НТУ "ХІІІ". – Харків: НТУ "ХІІІ". – 2011. – №29. – С.154-165. ISSN 2079-0791. 7. Шпшов В.П., Бурко В.В., Ревякина О.А., Муховатый А.А. Синтез зубчатых передач с пониженной энергоемкостью // Вісник КТУ "ХІІІ". – Харків: НТУ "ХІІІ". – 2011. – №29. – С.154-165. ISSN 2079-0791. 7. Шпшов В.П., Бурко В.В., Ревякина О.А., Муховатый А.А. Синтез зубчатых передач с пониженной энергоемкостью // Вісник КТУ "ХІІІ". – Карків: НТУ "ХІІІ". – 2012. – №13(184). – Ч.1. – С.117-123. – ISSN 1998-7927. 8. Федякин Р.В., Чесноков В.А. К выбору оптимальных параметров исходных контуров для передач с зацеплением Новикова / Сборник статей "Зубчатые передачи с зацеплением Новикова". – М.: Издание ВВИА им. проф. Н.Е. Жуковского, 1962. – С.164-184. 9. Кудрявцев В.Н. Детали машин: учебник. – Л.: Машиностроение, 1980. – 464с. 10. Трение. Изнашивание и смазка. Справочник. В 2-х кн. Кн. 1,2. / Под ред. И.В. Крагельского, В.В. Алисина. – М.: Машиностроение, 1978. – 400с., 1979.

Поступила (received) 04.03.2014

УДК 621.9.04

В.А. НАСТАСЕНКО, к.т.н., профессор каф. ЭСЭУ и ОП ХДМА, Херсон; *А.И. ПОДЗОЛКОВ*, магистр ХНТУ, Херсон

ПОВЫШЕНИЕ ТЕХНОЛОГИЧНОСТИ ИЗГОТОВЛЕНИЯ МНОГОЗАХОДНЫХ ГИПЕРБОЛОИДНЫХ ЧЕРВЯЧНЫХ ИНСТРУМЕНТОВ

Работа относится к сфере технологии производства червячных зуборезных инструментов, в частности – гиперболоидных фрез, шеверов и шлифовальных кругов. Предложены наиболее простые технологические процессы для производства гиперболоидных червяков и проведен их анализ. Показана предпочтительность применения сборных конструкций фрез с цельными твердосплавными вставными рейками при модуле до 3мм, а при модуле до 8мм – закрепленных винтами на рейках твердосплавных пластин, повышающих технологичность их изготовления и эксплуатации.

Ключевые слова: червяк, фреза, зубообработка, гиперболоид.

Введение, связь работы с основными направлениями исследований. Работа относится к областям машиностроения и инструментального производства, в частности – к производству червячных инструментов для обработки зубчатых колес. Основой для выполнения данной работы является потребность совершенствования инструментов для зубообработки, к которым относятся червячные фрезы, шеверы и шлифовальные круги.

Потребности поиска новых технических решений в области червячных зуборезных инструментов обусловлены тем, что они относятся к давно изучаемым объектам, поэтому традиционные пути их совершенствования во многом исчерпаны, а сферы их возможного применения сокращаются и заменяются более эффективными инструментами, в частности – протяжками [1] и резцами для зуботочения [2]. Основные пути усовершенствования червячных зуборезных инструментов связаны с повышением их точности, износостойкости и производительности, за счет оптимизации конструктивных и геометрических параметров, улучшения инструментальных материалов и нанесения на

© В.А. Настасенко, А.И. Подзолков, 2014

них износостойких покрытий, при этом сложность производства и эксплуатации таких инструментов, как правило, повышается. Устранение указанных недостатков является *главной целью выполняемой работы*.

Анализ состояния проблемы и постановка задачи. В работах [3-7] показано, что наиболее перспективный путь повышения производительности и точности червячных зуборезных инструментов связан с переходом от цилиндрических конструкций к многозаходным (i>4) и многозубым (z>60) гиперболоидным, созданным на базе однополостного гиперболоида. Однако технология их изготовления существенно усложняется, поскольку в рамках традиционной осевой обработки [8], схема которой показана на рисунке 1, необходима реализация 1-го равномерного вращения и сложения 4-х движений переменной величины, связанных с движением центра кривизны гиперболы: 1) продольной подачи s_0 var, 2) поперечной подачи s_r var, 3) величины вылета r var, 4) величины угла φ var разворота инструмента в осевой плоскости.

При многопроходной обработке к этим 4-м движениям добавляются: дискретная подача на глубину резания на 1 проход, с движением отвода и подвода инструмента, а при многозаходной – дискретный поворот заготовки червяка на новый заход. При обработке витков фрезами или

Рисунок 1 – Схема формирования однополостного гиперболоидного червяка при осевой обработке

шлифовальными кругами – добавляется их вращение, как главное движение резания. Обработка гиперболоидных винтовых поверхностей по такому варианту требует:

а) точной настройки канавочного резца на размер начального диаметра червяка с разворотом резца в направлении по нормали к крайней точке гиперболы и установки его на исходный угол разворота по нормали к ней в этой точке, с исходной величиной вылета, равной радиусу кривизны гиперболы в этой точке и по 2-м координатам текущего центра ее кривизны;

б) сложных видов движений для обработки – равномерного вращения червяка и согласованных с ним и шагом его витков в осевом сечении (из расчета смещения на 1 шаг витка за 1 оборот червяка), неравномерных изменений угла поворота и величины текущего вылета резца, зависящих от параметров кривизны гиперболы;

 в) выполнения 2-х неравномерных подач суппорта – продольной и радиальной, формирующих траекторию движения точки текущего центра кривизны гиперболы.

Выполнение всех этих групп движений возможно на кинематически сложных станках, или на станках с ЧПУ, программируемым по 8 движениям, или при применении кинематических приспособлений, еще более сложных, чем для обработки глобоидных червяков.

Данной технологией ограничивается лишь производство гиперболоидных червячных шлифовальных кругов, для цельных фрез – к ним прибавляются операции формирования винтовых стружечных канавок, затылования и заточки зубьев, а для шеверов – выполнения стружечных канавок на боковых сторонах витков, что существенно повышает сложность и стоимость таких инструментов.

Другим недостатком обработки гиперболоидных инструментов в осевой плоскости – является несовпадение профиля их витков, режущих зубьев и профиля инструмента 2-го порядка для их обработки, как между собой, так и с профилем исходной зубчатой рейки, что усложняет контроль профиля самого