УДК 621.315

А.В.БЕСПРОЗВАННЫХ, канд. техн. наук, НТУ "ХПИ", Харьков

ТЕРМО-ТРИБО-ЭЛЕКТРИЧЕСКИЙ ПОТЕНЦИАЛ ДЛЯ ОЦЕНКИ СТАРЕНИЯ ПОЛИМЕРНОЙ ИЗОЛЯЦИИ КАБЕЛЕЙ

Після охолодження кабелів з полімерної ізоляцією, наприклад, при виводі енергоблоків на планово-профілактичні роботи, на жилах з'являється напруга. Вона обумовлена електризацією внаслідок тертя ізоляції жил одна об одну — термо-трибо-електричний ефект. Встановлено, що потенціал, якій виникає при цьому, різний для нових та зістарених кабелів. Він пов'язаний зі старінням ізоляції і зростає з окисленням ії поверхні.

После охлаждения кабелей с полимерной изоляцией (например, при выводе энергоблоков на планово профилактические работы) на жилах появляется напряжение. Она обусловлена электризацией в результате трения изоляции жил друг о друга — термо-трибо-электрический эффект. Установлено, что потенциал, которой возникает при этом, разный для новых и старых кабелей. Он связан со старением изоляции и растет с окислением их поверхности.

Введение. Трибоэлектричество (от греч. tríbos — трение) - явление возникновения электрических зарядов при трении. Наблюдается при взаимном трении двух диэлектриков, полупроводников или металлов различного химического состава или одинакового состава, но разной плотности; при трении металлов о диэлектрики; при трении двух одинаковых диэлектриков; при трении жидких диэлектриков друг о друга или о поверхность твердых тел и др. При этом электризуются оба тела: их заряды одинаковы по величине и противоположны по знаку. Трибоэлектричество характеризуется рядом закономерностей. При трении двух химически одинаковых тел положительные заряды получает более плотное из них. Металлы при трении о диэлектрик электризуются как положительно, так и отрицательно. При трении двух диэлектриков положительно заряжается диэлектрик с большей диэлектрической проницаемостью є.

Тела располагают в трибоэлектрические ряды, в которых предыдущее тело электризуется положительно, а последующее — отрицательно [ряд Фарадея: (+) мех, фланель, слоновая кость, перья, горный хрусталь, флинтглас, бумажная ткань, шелк, дерево, металлы, сера (–)]. Для диэлектриков, расположенных в трибоэлектрический ряд, наблюдается

убывание. Для металлов же характерно возрастание твердости.

При контакте металла с диэлектриком трибоэлектричество возникает за счет перехода электронов из металла в диэлектрик и перехода ионов того или иного знака из диэлектрика на поверхность металла. При трении двух диэлектриков этот эффект обусловлен диффузией электронов и ионов. Существенную роль может играть также разное нагревание тел при трении, что вызывает переход носителей тока с локальных неоднородностей более нагретой поверхности ("истинное" трибоэлектричество).

Трибоэлектричество приводит к нежелательному накоплению электрических зарядов в диэлектриках, например в синтетической ткани, в бумаге (при ксерокопировании, в полиграфии), при намотке конденсаторных секций с полимерными пленками, при экструдировании изоляции кабелей. Его устраняют заземлением металлических деталей, ионизацией воздуха, применением электрических разрядников, увеличением проводимости диэлектриков. Так, при ошланговании кабелей защитными полимерными оболочками на основе полиэтилена в последний добавляют сажу, поэтому возникающий трибозаряд в этом случае меньше.

Трибоэффект в кабелях обусловлен в основном контактной электризацией. Считается, что инжектированные в полимер электроны захватываются глубокими локальными состояниями (ловушками), лежащими вблизи уровня Ферми металла (~ 4 эВ). Такие ловушки обусловлены дефектами в структуре полимера, например примесями, а оксидирование поверхности полимера существенно увеличивает трибозаряд. Чем выше разница работ выхода (табл. 1) — $W_{\rm 3BMX}$ или контактная разность потенциалов (КРП) материалов — $U_{\rm K}$, тем больше поверхностная плотность заряда σ (при наличии воздушной прослойки между изолированными жилами):

$$W_{\text{pBbix}} = e \cdot (\varphi_{\text{B-Ba}} - \varphi_{\text{Bakyym}}) - E_F, \text{ 3B}$$
 (1)

$$U_{\kappa} = W_1 - W_2 , \qquad (2)$$

$$\sigma = e \cdot N_F \cdot (\varphi_{\text{B-Ba}} - \varphi_{\text{Bakyym}}) = \varepsilon_0 \cdot E, \qquad (3)$$

где $e=1,6\cdot 10^{-19}$ Кл — заряд электрона, $\phi_{\text{в-ва}}$, $\phi_{\text{вакуум}}$ — электростатические потенциалы в толще вещества и вакууме соответственно, E_F — энергия Ферми; $\epsilon_{\text{o}}=8,85\cdot 10^{-12}$ Ф/м — электрическая постоянная, E— напряженность электростатического поля.

Контактная разность потенциалов зависит от состояния (загрязненности) поверхности: в металле это окислы, сульфаты, на поверхности изоляции – различные масляные пленки, грязь, пыль, попавшие в

процессе изготовления кабеля, так и низкомолекулярные продукты (НМП), образовавшиеся в процессе старения изоляции кабеля под действием внешних факторов. Причем, чем выше загрязненность поверхности, тем меньше трибозаряд. Присутствие воды, влажность резко снижают заряд, в том числе за счет его "шунтирования" (для воды $\rho_{\rm V} \sim 10^5 \dots 10^6 \, {\rm CM\cdot M})$ [6].

Трибоэффект свойственен паре материалов, стоящих рядом в трибоэлектрическом ряду, например, алюминий — бумага (целлюлоза) (рис. 1). Высокими трибоэлектрическими свойствами по отношению к металлам обладает политетрафторэтилен (ПТФЭ). Полиэтилентерефталатная (лавсановая) пленка, которая используется в качестве скрепляющей обмотки в кабелях, имеет на порядок большую плотность поверхностных ловушек ($\sim 10^{15}$ эВ- 1 м- 2) по сравнению с полиэтиленом.

Таблица 1 – Работа выхода некоторых поликристаллических металлов, полупроволников и лиэлектриков

полупроводников и дизлектриков	
Поликристаллические металлы,	Работа выхода $W_{ m pвых}$., эВ
полупроводники и диэлектрики	
Литий	2,38
Калий	2,22
Цезий	1,81
Никель	4,50
Железо	4,31
Хром	4,58
Марганец	3,83
Медь	4,40
Алюминий	4,3
Окисленный алюминий	5,3
Золото	4,3
Серебро	4,3
Германий	4,76
Кремний	4,8
Полиамид	4,3
Поливинилхлорид	4,85
Полиэтилентерефталат	4,23
Политетрафторэтилен	4,22

Максимальная плотность поверхностного заряда, образующегося на поверхности контактирующих поверхностей изолированных жил

кабеля, ограничена величиной, достаточной для электрического поверхностного перекрытия: $E_{\rm nn} \approx 3~{\rm kB/mm}$:

$$\sigma_{\rm пp} = \varepsilon_{\rm o} \cdot E_{\rm пp} = 27 \cdot 10^{-9} \, {\rm K} {\rm л/m}^2 = 2.7 \, {\rm н} {\rm K} {\rm л/m}^2$$
,

т.е. на одном погонном метре длины контактирующих поверхностей линейная плотность составляет 2,7 нКл/м.

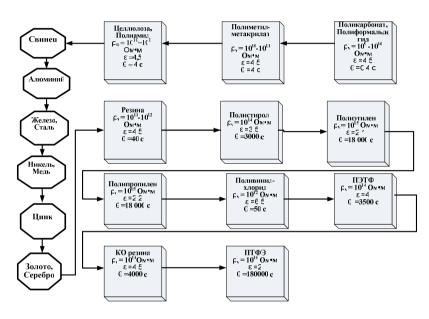


Рис. 1 – Трибоэлектрический ряд для изоляционных материалов и металлов.

Для диэлектриков приведены значения удельного объемного сопротивления, относительной диэлектрической проницаемости и постоянной времени:

$$\theta = \epsilon_o . \epsilon \cdot \rho_\nu$$

В кабелях трибоэффект присутствует всегда, т.к. есть возможность свободного перемещения конструктивных элементов кабеля друг относительно друга. Свойства материалов элементов – разные: медные и алюминиевые токопроводящие жилы, полиэтиленовая изоляция, полиэтилентерефталатная (лавсановая) и полиимидная скрепляющие ленты, медные и алюмополимерные экраны и т.д. Так, для телефонных кабелей связи наличие трибозаряда приводит к дополни-

тельным шумам (помехам). Поэтому применение лавсановой скрепляющей ленты в них следует исключить. Для специальных же кабелей с выраженным трибоэффектом контакт полиэтиленовой изоляции и лавсановой пленки необходим для получения большего сигнала. Такие кабели используются в качестве чувствительного элемента технических средств охраны, устройств контроля и регистрации механических воздействий [7,8].

Старение изоляции кабелей начинается с изменения ее поверхностных свойств: она окисляется, на ней накапливаются НМП. Поэтому логично предположить о возможности изменения трибо-электрического потенциала в ходе окисления (старения) полимерной изоляции.

Цель статьи – выявление признаков старения изоляции кабелей по термо-трибо-электрическому потенциалу.

Термо-трибо-электрический потенциал новых и состаренных кабелей с полимерной изоляцией. Для возбуждения трибо-электрического потенциала в кабелях избран метод релаксации термомеханических напряжений. Жилы кабелей и полимерная изоляция имеют различные коэффициенты теплового линейного расширения (ТКЛР). Так, для меди ТКЛР составляет от 2 до 50, а для полиэтилена – от 60 до 120 * 10⁻⁶ 1/град в зависимости от температуры. В результате при изменении температуры в кабелях возникают термомеханические напряжения. Их следствием являются проскальзывания изолированных жил друг относительно друга, из-за чего на жилах возникает термо-трибо-электрический потенциал.

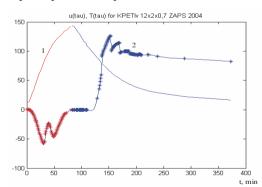


Рис. 2. Кривые трибоэлектрического потенциала напряжения при нагреве и охлаждении кабеля КПЭТИ.

На рис.2 приведекривые трибоны электрического потенциала кабеля с полиэтиленовой изолящией жил полиэтиленовой защитной оболочкой. При нагревании кабеля до 80 °С (кривая нагрева 1) на жилах появился потенциал около -50 В (кривая 2). В нагретом кабеле трибо-электрические заряды рассеиваются и потенциал снижается до

нуля. При охлаждении до 50° С потенциал на жилах достигает 100 В.

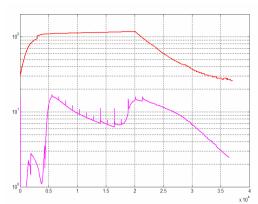


Рис.3. Кривая температуры (верхняя, в °С) и трибоэлектрического потенциала (нижняя линия, в В) для одной из пар" две жилы вместе – против экрана пары" нового кабеля КПЭТИ-12х2х0,7/ОП РАЭС-2007.

На рис. 3 приведены кривые температуры и трибо-электрического потенциала в образце нового кабеля с изоляцией жил из радиационно-сшитого полиэтилена. Каждые две жилы кабеля скручены вместе и обмотаны полиимилной лентой. Проскальзывание пары жил с полиэтиленовой изоляпией относительно полиимидной обмотки приводит к появлению трибопотенциала величиной до 100 В.

Измерение трибопотенциала выполнено вольтметромэлектрометром В7-57/1, входное сопротивление которого свыше 1000 ТОм. Снижение трибопотенциала в ходе охлаждения образца связано не с влиянием вольтметра, а с токами утечки образца за счет поверхностной проводимости.

На рис. 4 приведены кривые температуры и трибопотенциала

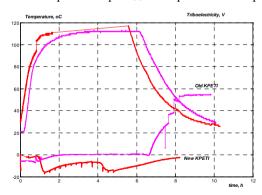


Рис.4. Сравнение кривых трибоэлектрического потенциала для нового (New) и старого (Old) кабелей КПЭТИ; кривые нагрева – в левой верхней части рисунка.

двух образцов кабеля: нового и состаренного. потенциала Величина кабеля состаренного оказалась выше, чем нового. Это может быть связано с окислением поверхности изоляции состаренного кабеля. из-за чего трибоэлектрический заряд увеличивается.

Сушка кабеля привела к тому, что трибозаряд перестал рассасываться после

остывания кабеля (рис. 5, 6) и продержался в неизменном виде почти пять суток (рис. 7).

Для исключения влияния паров воды, которые адсорбируются

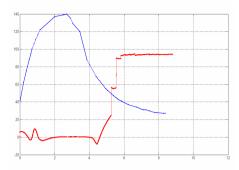


Рис.5. Кривая трибо-электрического потенциала промежутка "две жилы в паре вместе — против экрана пары" в процессе нагрева и охлаждения старого (Old) кабеля КПЭТИ-12х2х0,7 после дополнительного ускоренного теплового старения при 150 °C в течение 10 час.

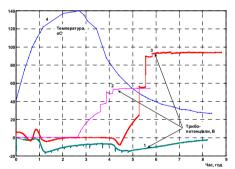


Рис.6. Кривые термо-трибо-электрического потенциала в новом (1), старом (2) и дополнительно состаренном (3) кабелях КПЭТИ. Кривая 4 — температура кабеля.

поверхностью изопящии многожильных кабелей (в основном, в местах соприкосновения изолированных жил – в микрокапиллярах, образованных зоной контакта) образец состаренного кабеля подвергался длительному воздействию повышенной температуры -150 °С в течение 10 час. После этого цикл нагрева до 140 °C и охлаждения вместе с термостатом до комнатной температуры.

Снижение потенциала

началось только на шестые сутки со дня термоактивации. Вероятной причиной снижения трибоэлектрического потенциала на шестые сутки могло быть повышение влажности в комнате из-за изменившихся погодных условий.

Несмотря на очевидную связь трибоэлектрического потенциала с влажностью атмосферного воздуха, это явление представляется перспективным для наблюдением за изме-

нением состояния поверхности изоляции жил кабелей гермозоны АЭС. При работе энергоблока температура в гермозоне достигает 60 °C, а относительная влажность – почти 98%. При переходе в режим планово-профилактических работ (обычно один раз в течение года) энерго-

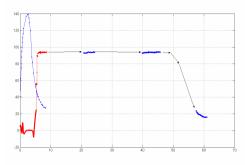


Рис.7. Длительное наблюдение за трибо-электрическим потенциалом витой пары кабеля КПЭТИ после нагрева до 150 °C.

блок расхолаживается. В течение суток температура в гермозоне уменьшается до 22 – 25 °C, что дает возможность обслуживающеперсоналу начинать проводить регламентные работы в гермозоне. В этот период контролируемый кабель может быть отсоединен от нагрузки и переведен в режим холостого хода либо короткого замыкания (в зависимости от

режима проверки — сопротивления изоляции или омические сопротивления жилы и экранов). В контрольных кабелях типа КПЭТИ есть возможность выполнить подогрев одной пары жил, пропуская по ним ток величиной всего 1-2 А. При диаметре жил кабеля 0,7 мм плотность тока составит 2,5 — 5 А/мм 2 , что вполне достаточно для прогрева выделенной пары до температуры $60-90\,^{\circ}\mathrm{C}$ в течение около 1 часа. В процессе нагрева и последующего охлаждения выполняют измерение потенциала соседней пары кабеля, которая находится в режиме холостого хода.

Выводы. Таким образом, термо-трибо-электрический потенциал выше для состаренных кабелей. Он может быть мерой состаренности поверхности изоляции из сшитого полиэтилена.

Необходимым условием наблюдения термо-трибо-электрического потенциала есть высокое сопротивление изоляции кабеля — не менее 10 — 100 ТОм на погонный метр длины. Такое сопротивление имеют контрольные кабели с изоляцией из сшитого полиэтилена — КПЭТИ, КПЭТИнг, СПоВР, КПоСГ. Другим условием является использование вольтметров-электрометров с входным сопротивлением не менее 1000 ТОм.

Свойство термо-трибо-электрического потенциала сохраняется сутками, без снижения уровня, что указывает на его возможную электретную природу. Заряды, образовавшиеся в результате электризации поверхности изоляции, задерживаются на ловушках в приповерхностных слоях, и могут там удерживаться долго, без заметного снижения плотности.

При электрической емкости пар кабеля порядка $100~n\Phi/м$ и термо-трибо-электрическом потенциале 100~B для состаренных кабелей

линейная плотность заряда составляет 10 нКл/м, т.е. в 3 раза выше максимальной линейной плотности $\sigma_{\rm пp}$ =2,7 нКл/м. Возникающие при этом разряды можно дополнительно регистрировать с помощью техники измерения частичных разрядов или электронной акустической эмиссии.

Список литературы: 1. Тареев Б.М. Физика диэлектрических материалов/ Тареев Б.М. - М: Энергия, 1973. - 328 с. **2**. *Казарновский Д.М*. Испытание электроизоляционных материалов и изделий: учебн. (для техникумов) / Д.М. Казарновский, Б.М. Тареев. – Л.: Энергия. Ленингр. отд-ние, 1980. – 216 с. 3. Финкель Э.Э. Особенности эксплуатации электроизоляционных и кабельных изделий на атомных электростанциях и специфика определения их надежности / Э.Э. Финкель. – М.: Информэлектро, 1985. – 56 с. **4.** Техніка і електрофізика високих напруг / Бржезицький В. О., Ісакова А. В., Рудаков В. В. та ін.; за ред. В. О. Бржезицького та В. М. Михайлова. – Харків: НТУ "ХПІ", Торнадо, 2005. – 930 с. **5.** *Борисова М.*Э. Изучение процессов накопления и релаксации заряда в статических композициях полиимида / М.Э. Борисова, О.В. Галюков, П.В. Цацынкин и др. // Электричество. – 2007. – №6. – С. 57-62. **6**. Лущейкин Г.А. Методы исследования электрических свойств полимеров / Лущейкин Г.А. – M.: Химия, 1988. – 160 c. 7. Wasem J.V. et al. Transient current generation during wear of high density polyethylene by a stainless steel stylus // Surface Dynamics Lab., Washington SU, Pullman, WA 99164-2814. 8. Оленин Ю.А. Исследование виброчувствительных элементов на основе трибоэлектрических кабелей / Ю.А. Оленин // Современные охранные технологии и средства обеспечения комплексной безопасности объектов. – Пенза, 2004. – С. 175-179.

Надійшла в редколегію 9.07.2009