УДК 658.012

Н.И. БОЙКО, д-р техн. наук, НИПКИ "Молния", Харьков *С.Ф. КОНЯГА*, магистр, НТУ "ХПИ", Харьков

РАСЧЕТ ЭЛЕКТРИЧЕСКОГО ПОЛЯ МНОГОДИСКОВОЙ ЭЛЕКТРОДНОЙ СИСТЕМЫ

В статті розглянуто розрахунок різконеоднорідного електричного поля за допомогою метода скінчених різниць. Проаналізовано розподіл поля при різних геометричних параметрах системи.

В статье рассматривается расчет резконеоднородного электрического поля с помощью метода конечных разностей. Проанализировано распределение поля при разных геометрических параметрах системы.

Введение. Система электродов на рис. 1 используется для генерации озона и очистки газовых выбросов [1]. Система содержит диски толщиной 10-40 мкм. К ним подаются импульсы высокого напряжения, возникает коронный разряд, в котором происходит наработка активных частиц. Основным действующим фактором является напряженность электрического поля.

Цель работы. Составить математическую модель электрического поля заданной системы, исследовать распределение поля при различных геометрических параметрах электродов.

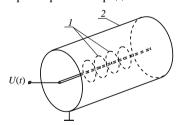


Рис. 1. Система электродов: 1 – диски; 2 – заземленная труба.

Методика расчета. Принято допущение о квазистационарности поля. В постановку задачи входит уравнение Лапласа (1) в цилиндрической системе координат, учитывающее осевую симметрию поля, а также граничные условия (2), учитывающие симметрию относительно границ B_2 и B_4 (рис. 2,a).

$$\frac{\partial^2 \varphi}{\partial r^2} + \frac{1}{r} \cdot \frac{\partial \varphi}{\partial r} + \frac{\partial^2 \varphi}{\partial z^2} = 0 ; \qquad (1)$$

$$\varphi|_{B_1} = U; \quad \varphi|_{B_3} = 0; \quad E_z|_{B_2, B_4} = 0; \quad \frac{\partial \varphi}{\partial z}|_{B_2, B_4} = 0.$$
(2)

Для решения задачи методом конечных разностей используется расчетная сетка, показанная на рис. 2, а. Так как толщина дисков намного меньше характерных размеров системы, используется сетка с неравномерным шагом, который уменьшается с приближением к краю диска. С помощью неравномерного шага также учитывается криволинейная форма границы у кромки диска.

Производные в уравнении (1) заменяем их разностными аналогами, полученными из разложения потенциала в ряд Тейлора в окрестности узловой точки по шаблону "крест" на рис. 2, б [2].

Уравнение (3) приведено для участка сетки с равномерным шагом:

$$\frac{\varphi_i^{k+1} + \varphi_i^{k-1} - 2 \cdot \varphi_i^k}{h^2} + \frac{1}{r_k} \cdot \frac{\varphi_i^{k+1} - \varphi_i^{k-1}}{2 \cdot h} + \frac{\varphi_{i+1}^k + \varphi_{i-1}^k - 2 \cdot \varphi_i^k}{h^2} = 0.$$
 (3)

Уравнение приводится к виду $\varphi_i^k \cdot M = L$, а потенциал на очередной итерации j+1 пересчитывается по формуле [3]:

$$\varphi_{i,k}^{j+1} = \varphi_{i,k}^{j} + k \cdot \frac{L - \varphi_{i,k}^{j} \cdot M}{M}, \ k=1..2.$$
(4)

Программа составлена на языке программирования С++. Алгоритм проходит узлы расчетной сетки и пересчитывает потенциал по формуле (4). Итерации прекращаются при достижении заданной погрешности.

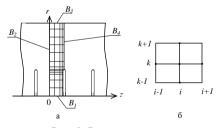


Рис. 2. Расчетная сетка.

Результаты расчета. На рис. 3 показаны силовые и эквипотенциальные линии поля при расстояниях между дисками: а) 10 мм; б) 20 мм; в) 30 мм. Значения координат r и z приведены в мм.

Расстояние между дисками влияет на распределение поля и определяет габариты системы. Эквипотенциали в области между дисками на рис. 3, в расположены значительно ближе к внутреннему стержню, чем на рис. 3,а.

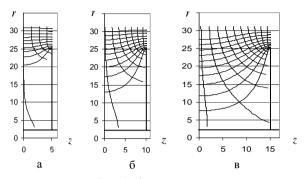


Рис. 3. Картина поля.

На рис. 4 показано изменение напряженности поля возле диска вдоль радиальной координаты. Толщина дисков на рис. 4, а: 1–10 мкм; 2–40 мкм. Расстояние между дисками на рис. 4, б: 1–10 мм; 2–20 мм; 3–30 мм.

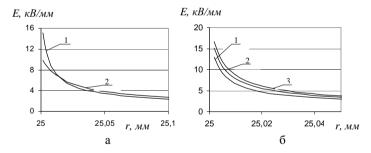
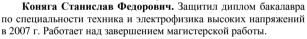


Рис. 4. Изменение напряженности поля вдоль радиальной координаты.


Выводы. Показано, что поле резконеоднородное и на расстоянии 0,1 мм от края диска уменьшается в восемь раз. При уменьшении толщины дисков с 40 до 10 мкм максимальное значение напряженности поля увеличивается в 1,5 раз (рис. 4, а). Вычисления показывают, что при уменьшении расстояния между дисками до 10–20 мм максимум напряженности поля уменьшается незначительно.

Список литературы: 1. *Бойко Н.И.*, *Борцов А.В.*, *Евдошенко Л.С. и др.* Импульсный коронный разряд с расширенной зоной ионизации: физические основы получения и перспективные области применения // Електротехніка і Електромеханіка. − 2004. − № 3. − С. 98–104. 2. *Самарский А.А.* Введение в теорию разностных схем. – М.: Наука, 1971. 3. *Шуп Т.* Решение инженерных задач на ЭВМ. – М.: Мир, 1982.

Бойко Николай Иванович, главный научный сотрудник, доктор технических наук, доцент. Окончил с отличием Харьковский политехнический институт по специальности "Инженерная электрофизика" в 1978 году и Харьковский государственный университет по специальности "Радиофизика и электроника" также с отличием в 1982 году. Защитил диссертацию кандидата технических наук в Московском энергетическом институте в 1989 году, а диссертацию доктора технических наук – в Национальном техническом университете "Харьковский политехнический институт" (НТУ "ХПИ") в 2003 году. С 1978 года по настоящее время работает в подразделении НТУ "ХПИ", которое в настоящее время называется Научно-исследовательский и проектноконструкторский институт "Молния". По совместительству преподает на кафедре енженерной электрофизики НТУ "ХПИ".

Научные интересы находятся в области техники сильных электрических и магнитных полей, электрофизических и высоковольтных технологий, высоковольтной импульсной техники, в том числе мощной, силовой электроники.

Научные интересы связаны с проблемами моделирования физических полей в электротехнических установках.

Поступила в редколлегию 16.04.2009