УДК 621.314

К.В. ДУБОВЕНКО, д-р техн. наук, доцент, зав. каф. НГАУ, Николаев

ВЛИЯНИЕ ПАРАМЕТРОВ ЭЛЕКТРОВЗРЫВНОГО РАЗМЫКАТЕЛЯ НА ХАРАКТЕРИСТИКИ ЭЛЕКТРИЧЕСКОГО РАЗРЯДА В КОНТУРЕ С ИНДУКТИВНЫМ НАКОПИТЕЛЕМ ЭНЕРГИИ

Досліджено характеристики електричного розряду в контурі з індуктивним накопичувачем енергії і плазмовим навантаженням з урахуванням впливу параметрів розмикача на процеси в міжелектродному проміжку.

Исследованы характеристики электрического разряда в контуре с индуктивным накопителем энергии и плазменной нагрузкой с учетом влияния параметров размыкателя на процессы в межэлектродном промежутке.

Введение. Анализ современного состояния импульсной энергетики свидетельствует о том, что дальнейшее повышение эффективности работы импульсных генераторов плазмы (ИГП) связано с увеличением мощности разряда, расширением диапазона режимов ввода энергии в межэлектродный промежуток, улучшением весогабаритных и стоимостных характеристик разрядно-импульсных установок. В этом отношении возможности установок с традиционными емкостными накопителями ограничены [1, 2]. Вместе с тем, перспективным решением проблемы является использование наряду с емкостными индуктивных накопителей энергии (ИНЭ) в разрядных контурах импульсных генераторов плазмы [3]. Импульсная передача энергии из ИНЭ в нагрузку возможна при реализации размыкания контура его накачки от первичного источника.

Поэтому целью работы является численный анализ переходных процессов в контуре ИГП с ИНЭ и плазменной нагрузкой в различных режимах работы электровзрывного размыкателя.

Математическая модель расчета разрядных характеристик в контурах с индуктивным накопителем. Режим ввода электромаг-нитной энергии в нагрузку генератора импульсных токов с ИНЭ определяется схемой и параметрами разрядного контура. Схема замещения разрядного контура с индуктивным накопителем энергии представлена на рис. 1. На нем обозначено: C – емкость конденсаторной батареи; R_{bl} , L_{bl} – суммарные сопротивление и индуктивность разрядника, конденсаторной батареи и шин контура накачки ИНЭ; R_1 , L_1 и R_2 , L_2 – сопротивления и индуктивности размыкателя и ИНЭ соответственно; R_{b2} , L_{b2} – сопротивление и индуктивность шин и разрядника ветви нагрузки. В такой цепи при обрыве тока *II* в контуре накачки ИНЭ размыкателем за счет импульса высокого напряжения осуществляется пробой разрядника в ветви нагрузки и ток из ИНЭ переключается в межэлектродный промежуток.

Рис. 1.

На рис. 1 электроды расположены вдоль оси цилиндрической разрядной камеры. Между ними [3] инициируется канал разряда. Стенка разрядной камеры служит обратным токопроводом. Если длина канала разряда намного превышает его радиус, пространственно-временные процессы в межэлектродном промежутке во время протекания тока можно количественно описать одномерной магнитогидродинамической моделью в лагранжевых переменных [3,4].

$$i = \rho \frac{\partial (rH)}{\partial s}, \quad \mu_0 \frac{\partial}{\partial t} \left(\frac{H}{\rho r} \right) = \frac{\partial E}{\partial s},$$
 (1)

$$i = \sigma E, \quad f = \frac{\mu_0 i H}{\rho}, \quad q = \sigma E^2,$$
 (2)

$$\frac{\partial}{\partial t} \left(\frac{1}{\rho} \right) = \frac{\partial}{\partial s} (rv), \ \frac{\partial v}{\partial t} = -r \frac{\partial p}{\partial s} + f \ , \ v = \frac{\partial r}{\partial t},$$
(3)

$$\frac{\partial \varepsilon}{\partial t} = -p \frac{\partial (rv)}{\partial s} + q - \frac{\partial W}{\partial s} - Q_V, \quad W = -\chi \rho r \frac{\partial T}{\partial s}, \quad (4)$$

$$\chi_{R} = \frac{16}{3} \sigma_{B} T^{3} l_{R}, \ l_{R} = 6.8 \cdot 10^{-10} \left(\frac{T}{10^{4}}\right)^{1.33} \left(10^{3} \rho\right)^{-7/4}, \ Q_{V} = \frac{\sigma_{B} T^{4}}{l_{R}}.$$
 (5)

$$p = p(\rho, T), \quad \varepsilon = \varepsilon(\rho, T), \quad \chi = \chi(\rho, T), \quad \sigma = \sigma(\rho, T),$$
 (6)

$$R_2 = R_2(j_{2m}, W_2, dW_2/dt) , \ j_{2m} = I_{2m}/S_0 , \ W_2 = \int I_2(t)^2 \cdot R_2 dt , \quad (7)$$

где r – пространственная координата; t – время; s – лагранжева коорди-ната ($ds = \rho r dr$); μ_0 - магнитная постоянная; σ – удельная электропро-водность; f, q – плотность электромагнитной силы и мощность тепловых источников в пересчете на единицу массы; W – суммарный тепловой поток; Q_V – объемные потери энергии излучением; χ – удельная теплопроводность, определяемая суммой удельной электронной χ_{\Im} , молекулярной χ_M и лучистой χ_R теплопроводности; σ_B – постоянная Стефана-Больцмана; l_R – средняя длина свободного пробега излучения по Росселанду; I_{2m} , j_{2m} – амплитудное значение тока и плотности тока в фольге электровзрывного коммутатора; S_0 – начальная площадь поперечного сечения фольги; W_2 – энергия, выделившаяся в коммутаторе.

Электродинамические процессы в межэлектродном промежутке описываются уравнениями электромагнитного поля (1), (2). Влияние гидродинамических процессов на электродинамические проявляется через движение среды, которое с одной стороны определяет динамику изменения радиуса токопроводящей области, а с другой – влияет на плотность среды и удельную электропроводность плазмы. Движение среды в межэлектродном промежутке описывается законами сохранения массы и количества движения (3). Закон сохранения энергии (4) представляет собой уравнение баланса энергии по видам: механической, электромагнитной, тепловой, излучения. Излучением нельзя пренебрегать уже при температурах $T > 10^4$ К. В противном случае это приводит к завышению расчетной температуры в несколько раз [3]. В рассматриваемом случае электрического разряда в жидкости оптическая плотность плазмы велика во всем спектре частот излучения. В этом случае справедливо приближение лучистой теплопроводности [5, 6]. В соответствии с ним коэффициент лучистой теплопроводности *l_R* имеет вид (5). В конце активной стадии разряда, когда ток мал и плотность плазмы вследствие ее расширения уменьшена более, чем на порядок величины, средняя длина свободного пробега по Расселанду превышает радиус плазменного канала и канал начинает излучать из всего объема. В этом случае возрастают объемные потери энергии излучением Q_V , которые определяются согласно [5, 6] соотношением (5). Зависимости (6), характеризующие состояние рабочей среды вмежэлектродном промежутке, в математической модели рассчитаны в квазиравновесном приближении [7].

Изменение сопротивления аюминиевой фольги электровзрывного коммутатора при диссипации в нем энергии определяется соотношениями (7), полученными экспериментально для широкого диапазона характеристик электровзрыва [9].

Пространственно-временные процессы в межэлектродном промежутке рассматриваются в области $0 < r < r_{\Gamma}$, где координата r = 0 соответствует положению оси канала и разрядной камеры, а $r = r_{\Gamma}$ – границе рассматриваемой области (стенке разрядной камеры), выбираемой из условия ее недосягаемости возмущениями среды за время разряда. В связи с этим краевые условия для уравнений (3), (4) математической модели заданы в виде:

$$v(0,t) = 0, \ v(r_{\Gamma},t) = 0, \ W(0,t) = 0, \ W(r_{\Gamma},t) = 0.$$
(8)

Краевые условие для уравнений электромагнитного поля (1) определяются значениями напряженности магнитного поля на границах расчетной области:

$$H(0,t) = 0, \ H(r_{\Gamma},t) = I(t)/(2\pi r_{\Gamma}).$$
 (9)

Значение тока в (9) определяется совместным решением уравнений электромагнитного поля с уравнениями внешней электрической цепи [4, 8]. Для замкнутого контура любой схемы замещения справедливо уравнение Максвелла в интегральной форме

$$\oint E dm = -\frac{\mu_0 l}{2\pi} \frac{d}{dt} \left[I(t) \ln \frac{r_{\Gamma}}{r_k(t)} \right],\tag{10}$$

где *m* – линия контура интегрирования; *l* – длина канала.

Таким образом, система уравнений (1)-(10) представляет собой математическую модель для расчета пространственно-временных процессов электрического разряда в контуре с ИНЭ.

Решение системы уравнений выполнено конечно-разностным методом раздельных прогонок [4]. Моделировался разряд в воздухе атмосферного давления. В расчетах в качестве базовых значений принимались следующие параметры разрядного контура: емкость конденсаторной батареи C = 40 мкФ, начальное напряжение на емкости $U_0 = 50$ кВ, индуктивность ИНЭ $L_2 = 3$ мкГн, индуктивность электровзрывного размыкателя $L_1 = 0,3$ мкГн, сопротивление и индуктивность шин цепи накачки ИНЭ составляли $R_{b1} = 0,05$ Ом и L_{b1}

= 0,6 мкГн, сопротивление и индуктивность шин и разрядника ветви нагрузки имели значения $R_{b2} = 0,05$ Ом и $L_{b2} = 0,4$ мкГн.

Влияние длины электровзрывного размыкателя на характер электроразрядных процессов. Экспериментально установлено [9], что при небольших длинах в процессе отключения пик перенапряжения и напряженность электрического поля между его контактами оказываются высокими и ионизационные процессы приводят к резкому падению его сопротивления. Поэтому для снижения потерь энергии на переключение тока расстояние между контактами коммутатора должно выбираться из условия необратимого роста его сопротивления. С другой стороны, увеличение длины коммутатора приводит к росту джоулевых потерь и снижению КПД преобразования энергии.

Исходя из этих соображений, в работе численные расчеты выполнены для различных значений длин фольги размыкателя шириной 0,15 м и толщиной 10^{-5} м. Остальные параметры схемы замещения контура соответствовали базовым. Результаты расчетов электрических характеристик разряда представлены на рис. 2 (кривые: $1 - d_{\phi} = 0,55$ м; $2 - d_{\phi} = 0,7$ м; $3 - d_{\phi} = 1,05$ м).

Рис. 2.

В контуре длина электровзрывного коммутатора слабо влияет на амплитуду протекающего через ИНЭ тока (рис. 2,а), но в значительной степени определяет скорость переключения тока в межэлектродный промежуток (рис. 2,б). С увеличением длины размыкателя d_{ϕ} амплитуда тока канала уменьшается. Следует отметить, что при значении $d_{\phi} = 0,55$ м пик коммутационного перенапряжения высок (рис. 2,в). Это может потребовать введения дополнительных мер для предотвращения развития ионизационных процессов.

Уменьшение амплитуды и скорости переключения тока в межэлектродный промежуток объясняется снижением величины введенной в канал энергии к моменту окончания электрического взрыва фольги (табл. 1) за счет возрастания затрат на разрыв цепи накачки ИНЭ при увеличении длины взрывающегося проводника.

Таблица 1 – Распределение выделяемой энергии по элементам размыкателя. кЛж

Элемент схемы замещения	Длина размыкателя l_{ϕ} , м		
	0,55	0,70	1,05
Емкость конденсаторной батареи	15,0	14,4	13,3
Индуктивность ИНЭ	4,7	4.4	3,1
Активное сопротивление размыкателя	22,8	24,4	27,6
Активное сопротивление канала разряда	3,3	2,7	2,4

В результате, увеличение длины размыкателя d_{ϕ} от 0,55 м до 1,05 м приводит к уменьшению амплитуды давления от 40 до 24 МПа, а температуры - от 30·10³ К до 26·10³ К. Отсюда следует соответствие более низких значений удельной электропроводности плазмы на оси токопроводящего столба и скорости его расширения (рис. 3) большим значениям длин размыкателя. На рис. 3 обозначения кривых те же, что и на рис. 2.

Зависимость максимальных значений электродинамических характеристик разряда от длины размыкателя *d* (рис. 4) взаимосвя-

зано с изменением тока и расширением канала. Уменьшение амплитуды I_3 при мало зависящих от длины коммутатора значениях $r_{\kappa}(t)$ на стадии размыкания обусловливает снижение напряженности магнитного поля, плотности тока, электромагнитной силы. Зависимость $q_m(d)$ имеет максимум, который определяет КПД преобразования энергии.

Следует отметить, что скорость переключения тока в канал разряда, зависящая от длины коммутатора, определяет амплитуду давления в межэлектродном промежутке. Значение энергии, вложенной в канал, коррелирует со значениями его максимальной температуры и удельной электропроводности.

Зависимость характеристик разряда от площади поперечного сечения коммутатора. При изменении поперечного сечения взрывающегося проводника [9] изменение времени начала коммутации в контуре происходит при неизменной начальной скорости увеличения тока в накопителе. Кроме того, энергия коммутации оказывается почти линейно зависящей от площади сечения проводника. Поэтому в приводимых ниже результатах численных расчетов времена докоммутационной стадии разряда задавались изменением ширины фольги при заданных значениях ее длины ($d_{\phi} = 0,75$ м) и толщины ($h_{\phi} = 10^{-5}$ м). На рис. 5 представлены электрические характеристики разряда: токи в ветвях контура (а), скорость переключения тока в плазменный канал (б), напряжение на размыкателе (в) для различных значений ширины фольги размыкателя (кривые: $1 - b_{\phi} = 0,1$ м; $2 - b_{\phi} = 0,14$ м; $3 - b_{\phi} = 0,2$ м).

В контуре увеличению длительности докоммутационной стадии соответствует:

а) рост амплитуды тока ИНЭ, достигающей максимума при больших значениях b_{ϕ} (рис. 5,а);

б) некоторое снижение максимального значения скорости перекючения тока в межэлектродный промежуток (рис. 5,б);

в) уменьшение перенапряжения на размыкателе (рис. 5,в).

Поведение представленных характеристик разряда качественно согласуется с результатами [9], полученными для случая разряда ИНЭ на индуктивность.

Следует иметь в виду, что уменьшение амплитуды напряжения на размыкателе в данном случае не означает облегчения его работы с точки зрения бездугового отключения цепи. Дело в том, что увеличение ширины проводника приводит, согласно [9], к некоторому снижению уровня напряжения развития ионизационных процессов по поверхности размыкателя.

В табл. 2 представлено распределение энергии в элементах контура в момент окончания размыкания при различных значениях ширины фольги. При увеличении ширины фольги и длительности докоммутационной стадии разряда возрастает амплитуда тока, протекающего через индуктивный накопитель и коммутатор. В соответствии с этим увеличивается энергия, запасенная в ИНЭ, и снижается энергия, оставшаяся в емкостном накопителе. Согласно данным табл. 2 это способствует увеличению энерговвода в межэлектродный промежуток.

Рис. 5.

Таблица 2 – Распределение выделяемой энергии по элементам размыкателя. кЛж

Элемент схемы замещения	Ширина размыкателя b_{ϕ} , м		
	0,10	0,14	0,20
Емкость конденсаторной батареи	25,5	13,7	4,3
Индуктивность ИНЭ	2,3	3,4	3,8
Активное сопротивление размыкателя	18,1	26,7	33,9
Активное сопротивление канала разряда	0,6	2,5	3,0

Некоторое уменьшение максимальных значений скорости переключения тока в канал и увеличение времени коммутации наряду с замедлением роста амплитуды тока канала при увеличении ширины фольги (рис. 5) поясняет наличие максимума у кривых зависимостей электродинамических характеристик разряда (рис. 6). При небольших значениях *b* амплитуда плотности тока ограничена малым значением собственно тока межэлектродного промежутка. При b > 0,15 м, несмотря на увеличение амплитуды тока, максимальное значение его плотности падает из-за увеличения площади поперечного сечения токопроводящего столба к моменту окончания размыкания. Соответствующим образом ведут себя временные зависимости удельной электропроводности плазмы и радиуса канала при разных значениях ширины фольги (рис. 7). На рис. 7 обозначения кривых те же, что и на рис. 5.

Особенностью рассматриваемого процесса является отсутствие максимума в зависимости амплитуды давления плазмы канала от ширины фольги. Давление p возрастает от 23 до 33 МПа при увеличении b от 0,1 до 0,2 м. Этот результат является следствием того, что при возрастании времени до начала коммутации с ростом ширины фольги, несмотря на снижение амплитуды скорости переключения тока в канал, увеличивается начальное значение dI_3/dt . При этом обеспечиваются более высокие значения скорости энерговыделения в межэлектродном промежутке на начальной стадии переключения тока.

Вывод. Выполненный анализ свидетельствует о том, что изменение параметров электровзрывного коммутатора позволяет в широких пределах изменять режимы выделения энергии в плазме и влиять на количественные значения электродинамических и газодинамических характеристик разряда в установках различного технологического применения.

Список литературных источников: 1. Импульсные системы большой мощности / Пер. с англ. под ред. Э.И.Асиновского. – М.: Мир, 1981. – 247 с. 2. Романенко И.Н., Романенко Л.Н. Технологические возможности им-

пульсных генераторов плазмы // Импульсные методы обработки машинострои-тельных материалов. – Чебоксары: Чувашский государственный университет, 1985. - С. 18-21. **3.** Щерба А.А., Дубовенко К.В. Высоковольтные электроразрядные компактные системы. - К.: Наукова думка, 2008. -270 с. 4. Самарский А.А., Попов Ю.П. Разностные методы решения задач газовой динамики. – М.: Наука, 1980. – 352 с. 5. Зельдович Я.Б., Райзер Ю.П. Физика ударных волн и высокотемпературных газодинамических явлений. – М.: Наука, 1966. – 686 с. 6. Головнев И.Ф., Замураев В.П., Кацнельсон С.С. Радиационный теплоперенос в высокотемпературных газах. -М.: Энергоатомиздат, 1984. – 256 с. 7. Замышляев Б.В., Ступицкий Е.Л., Гузь А.Г. Состав и термодинамические функции плазмы. – М.: Энергоатомиздат, 1984. – 144 с. 8. Дубовенко К.В. Взаимодействие ударных волн в плазме канала сильноточного разряда в камере высокого давления // Журн. техн. Физики. – 1992. – Т. 62. – № 6. – С. 83-93. 9. Буриев В.А., Калинин Н.В., Лучинский А.В. Электрический взрыв проводников и его применение в электрофизических установках. – М.: Энергоатомиздат, 1990. – 432 с.

Дубовенко Костянтин Вікторович, доцент, доктор технічних наук. Захистив диплом інженера в Миколаївському кораблебудівному інституті за фахом "Електроустаткування суден" в 1981 році. Захистив дисертацію кандидата технічних наук за фахом "Теоретична електротехніка" у 1988 році і дисертацію доктора технічних наук за фахом "Електротехнічні комплекси і системи" у 2007 році в Інституті електродинаміки НАН України. Завідувач кафедри електротехнологій і електропостачання Миколаївського державного аграрного університету з 2008 р.

Наукові інтереси пов'язані з проблемами фізичних полів електричних розрядів в суцільних середовищах, розробкою електротехнічних комплексів і систем електророзрядної дії різного технологічного призначення.

Надійшла до редколегії 20.10.2009