УДК 621.373

Н.Н. ИГНАТЕНКО, канд. техн. наук, зав. сектором, НТУ "ХПИ"

ПРИБЛИЖЕННЫЙ РАСЧЕТ ИЗМЕНЕНИЯ ПЛОТНОСТИ ТОКА РАЗВИВАЮЩЕГОСЯ ИСКРОВОГО КАНАЛА В ВОЗДУШНЫХ ПРОМЕЖУТКАХ КРОУБАР-ЗАМЫКАТЕЛЕЙ НАГРУЗКИ ГЕНЕРАТОРОВ ТОКА МОЛНИИ

Запропоновано наближений метод розрахунку щільності струму іскрового каналу, який розвивається в робочих проміжках некерованих повітряних стержньових розрядників замикачів активно-індуктивного навантаження генератора великих імпульсних струмів блискавки.

Предложен приближенный метод расчета плотности тока искрового канала, который развивается в рабочих промежутках неуправляемых воздушных стержневых разрядников замыкателей активно-индуктивной нагрузки генератора больших импульсных токов молнии.

Введение. Высоковольтные генераторы больших импульсных токов находят широкое применение в народном хозяйстве и технике высоких напряжений. В настоящее время в НИПКИ "Молния" НТУ "ХПИ" разработаны мощные генераторы больших импульсных токов молнии (ГБИТМ) с высоким КПД разрядного контура. Неотъемлемой частью указанных генераторов импульсных токов молнии являются высоковольтные емкостные накопители энергии (ЕНЭ). В состав данных генераторов ГБИТМ входят и неуправляемые воздушные (атмосферного давления) стержневые разрядники кроубар-замыкателей RLнагрузки [1-3]. Благодаря рациональному выбору межэлектродных расстояний, электрический пробой неуправляемых воздушных стержневых разрядников кроубар-замыкателей наступает в момент времени, близкий к моменту достижения током в нагрузке своего максимального значения [1-4]. При этом в момент срабатывания неуправляемых воздушных разрядников кроубар-замыкателей нагрузки амплитудное значение импульсного напряжения $u_n(t)$ на них близко к нулю [3]. Модель развития искрового канала в воздушных промежутках разрядников замыкателей RL-нагрузки генераторов ГБИТМ описана в [5], где удалось расчетным путем показать динамику изменения скорости движения искрового канала в электродной системе "стержень-

стержень". Однако приведенная расчетная модель является неполной, так как не позволяет определить плотность тока и геометрию искрового канала, изменяющуюся под действием импульсного напряжения. Поэтому целью данной работы является расчетная оценка изменения плотности тока развивающегося искрового канала в неуправляемых воздушных стержневых разрядниках кроубар-замыкателей RLнагрузки мощных генераторов импульсного тока молнии.

1. Основная часть. На рис.1 приведено изображение воздушной (атмосферного давления) электродной системы "стержень-стержень", имеющую медные электроды. Определим в момент времени t_0 (время появления в рассматриваемой электродной системе эффективных электронов и начала формирования искрового канала [4-8]) собственную емкость C_0 данного воздушного промежутка на землю. Для этого применим выражение [9]:

$$C_{0} = \frac{2\pi\epsilon_{0}l}{\ln\frac{2l}{d} - D_{2}},$$
(1)

где l и d – длина и диаметр медного электрода; D_2 – коэффициент, зависящий от отношения длины электрода l к длине воздушного разрядного промежутка; ε_0 =8,86·10⁻¹² Φ /м.

Полагая, что в данной электродной системе ток проводимости значительно меньше тока смещения [10-11], определим амплитудное значение импульсного тока $i_p(t)$ через воздушный промежуток в момент времени t_0 :

$$i_p(t_0) = C_0 \left| \frac{du_p}{dt} \right|_{t=t_0},$$
 (2)

импул Рис. 1.Воздушная электродная разря, система "стержень-стержень" мерны в момент развития искрового схемь канала. венны

где $u_p(t)=U_0B_1\cos(a_1t) - U_0B_2\cos(b_1t) -$ импульсное напряжение, действующее на разрядные промежутки; B_1 , B_2 – безразмерные коэффициенты, определяемые из схемы замещения ГБИТМ, a_1 , b_1 – собственные круговые частоты в генераторе

токов [3-4]; U_0 – рабочее напряжение ЕНЭ.

Считая, что в начальный момент времени t_0 ток $i_p(t_0)$ равномерно распределяется по поперечному сечению электрода, находим, что начальная плотность тока j_0 в данной электродной системе будет равна $j_0=4$ $i_p(t_0)/\pi d^2$. При дальнейшем развитии искрового канала в момент времени t_1 в принятой расчетной модели как бы увеличивается попе-

речное сечение и длина верхнего электрода, которая в нашем случае будет равна: $l_1 = l + \Delta X_1$. Это приводит к росту емкости электродной системы на землю и, следовательно, к изменению величины импульсного тока через разрядный промежуток. Для определения плотности тока j_n искрового канала и нахождения площади поперечного сечения S_n искрового канала применим соотношение [10-11]:

$$\frac{di_p}{dS} = \frac{d}{dt} \left[\frac{dq}{dS} \right] = \varepsilon_0 \frac{dE}{dt}, \qquad (3)$$

где *q* – переносимый заряд; *E* – напряженность электрического поля в рассматриваемой электродной системе "стержень-стержень".

Индукцию электрического поля *D* на расстоянии $R = \pi^{-0.5} S^{0.5}$ от оси электродной системы можно определить с помощью теоремы Гаусса в виде: $D = 0.5q \ \Delta X^1 R^{-1}$ [11]. Данные соображения позволяют из выражения (3) получить простое соотношение:

$$\frac{dq}{dS} = D = \varepsilon_0 E = \frac{q}{2\pi^{0.5} S^{0.5} \Delta X} \,. \tag{4}$$

Соотношение (4) представляет собой дифференциальное уравнение первого порядка с разделяющимися переменными [12]. Интегрируя левую часть данного дифференциального уравнения в пределах q_1 и q_0 , а правую в пределах S_1 и S_0 для элементарного участка ΔX_1 получим:

$$\ln \frac{q_1}{q_0} = \frac{S_1^{0.5} - S_0^{0.5}}{\pi^{0.5} \Delta X_1}.$$
(5)

Нетрудно видеть, что для достаточно малого участка длиной ΔX_n решение дифференциального уравнения (4) можно записать как:

$$\ln \frac{q_n}{q_{n-1}} = \frac{S_n^{0.5} - S_{n-1}^{0.5}}{\pi^{0.5} \Delta X_n}.$$
(6)

Анализ выражения (6) показывает, что при достаточно малой длине участка ΔX_n численное значение емкостей C_n и C_{n-1} будет очень близко. Для указанного случая решение дифференциального уравнения (4) может быть представлено в следующем приближенном виде:

$$\ln \frac{U_{pn}}{U_{pn-1}} \approx \frac{S_n^{0,5} - S_{n-1}^{0,5}}{\pi^{0.5} \Delta X_n}.$$
 (7)

Проведем расчет изменения плотности тока в воздушных разрядных промежутках кроубар-замыкателей нагрузки мощного генератора ГБИТМ при рабочем напряжении ЕНЭ, равном U_0 =0,75MB [3-5]. Пусть рассматриваемая электродная система "стержень-стержень" имеет медные электроды диаметром d=0,01м и длиной l=0,1м. При междуэлектродном расстоянии S_{22} = S_{32} =0,245м емкость C_0 данного воздушного

промежутка на землю, согласно (1), будет равна $C_0=2,13\pi\Phi$. Из выражения (2) находим, что в начале развития искрового канала ток $i_p(t_0)$ в данной электродной системе равен *i*_p(*t*₀)=0,381А. При этом начальная плотность тока j_0 будет равна $j_0=4853,5$ А/м². Используя данные работы [5], находим, что при напряжении $u_p(t_1)=166,32$ кВ за время $\Delta t=0,225$ мкс искровой канал в воздушных разрядных промежутках кроубарзамыкателей нагрузки пройдет расстояние $\Delta X_1 = 0,00391$ м. Применив соотношение (7), находим, что площадь поперечного сечения развивающегося искрового канала в данном случае будет приближенно равна $S_1 \approx 107, 23 \cdot 10^{-6} \text{м}^2$. Зная S_1 и эффективную длину верхнего электрода l+ ΔX_1 , из выражения (1) находим, что электрическая емкость рассматриваемой электродной системы в момент времени t₁ будет приближенно равна $C_1 \approx 2,32 \Pi \Phi$. Из соотношения (2) следует, что импульсный ток $i_p(t_1)$ через промежуток будет иметь значение, равное $i_p(t_1) \approx 0,4433$ При этом плотность тока j_1 на элементарном участке ΔX_1 будет приближенно равна $j_1 \approx 4134$ А/м². Пользуясь разработанной методикой, будем по мере развития и продвижения искрового канала определять площадь его поперечного сечения S_n и плотность тока j_n в воздушных разрядных промежутках кроубар-замыкателей нагрузки. Расчетные данные представим в табл. 1.

Анализ приведенных в табл. 1 расчетных данных показывает, что по мере увеличения импульсного напряжения $u_p(t)$ в разрядных промежутках наблюдается рост поперечного сечения S_n канала искрового разряда. При этом величина импульсного тока $i_p(t)$ через промежуток зависит от скорости нарастания напряжения $u_p(t)$. В момент достижения напряжением $u_p(t)$ своего максимума ($t \approx 2,2$ мкс) ток через разрядный промежуток имеет свое минимальное значение, которое в нашем случае будет равно $i_p(t=2,2$ мкс)=0,2657А. Для указанного момента времени поперечное сечение S_n искрового канала будет наибольшим и составит: $S_6 \approx 1073, 24 \cdot 10^{-6} \text{m}^2$. Из таблицы видно, что за время $\Delta t = t_6$ – t₀=1,35мкс площадь поперечного сечения развивающегося искрового канала увеличивается в S₆/S₀≈13,7 раза. Это приводит к увеличению емкости рассматриваемой электродной системы "стержень-стержень" на землю (примерно в 2,6 раза) и, следовательно, к росту величины переносимых развивающимся искровым каналом зарядов. Далее по мере спада напряжения $u_p(t)$ в искровом канале разряда происходит изменение направления движения импульсного тока $i_p(t)$ и увеличение его амплитудного значения. Так, при t=3мкс импульсное напряжение $u_p(t)$ будет иметь амплитудное значение, равное $U_p=164,6$ кВ. При величине поперечного сечения искрового канала $S_n\approx 168,4\cdot 10^{-6}$ м² и емко-

сти $C_n=8,07 \, \text{п} \Phi$ электродной системы на землю амплитуда импульсного тока $i_p(t)$ искрового канала будет примерно равна $I_p=2,31$ А. Полученные расчетные результаты хорошо соответствуют известным экспериментальным данным [6-8].

t_n ,	$U_{p}(t),$	ΔX_n	dUp/dt,	C_n ,	i _n ,	$S_n \cdot 10^{-6}$,	j"
мкс	кВ	СМ	МВ/мкс	πΦ	Á	M ²	\dot{A}/M^2
<i>t</i> ₀ =0,85	134		0,1788	2,13	0,381	78,5	4853,5
<i>t</i> ₁ =1,075	166,32	0,391	0,1908	2,32	0,4433	107,23	4134
<i>t</i> ₂ =1,3	208,73	1,295	0,1826	2,989	0,546	242,15	2254,11
<i>t</i> ₃ =1,525	247,1	2,27	0,154	3,93	0,605	499,08	1214,22
<i>t</i> ₄ =1,75	276,66	3,05	0,1068	5,16	0,551	808,9	681,39
$t_5 = 1,975$	293,73	3,66	0,04414	6,03	0,2663	1044,49	254,95
$t_6 = 2, 2$	295,61	3,9	0,0289	6,878	0,2657	1073,24	247,6
t ₇ =2,425	280,34	3,725	-0,1069	7,08	-0,757	856,3	883,86
<i>t</i> ₈ =2,65	247,42	3,15	-0,1836	7,203	-1,322	497,08	2660,47
$t_9 = 2,875$	205,4	2,23	-0,2527	7,73	-1,953	223,4	8743,82

Таблица 1 – Расчетные значения плотности тока *j*_p и площадь поперечного сечения *S*_n развивающегося искрового канала

Необходимо отметить, что по далее мере роста тока импульсного тока $i_p(t)$ искровой канал в воздушных неуправляемых стержневых разрядниках кроубар-замыкателей нагрузки переходит в устойчивую электрическую дугу, которая при $t\approx3,7$ мкс надежно замыкает разрядный промежуток и обеспечивает работоспособность высоковольтного генератора токов молнии.

Выводы. Предложена расчетная модель развития искрового канала в длинных воздушных промежутках разрядников кроубарзамыкателей нагрузки мощных генераторов ГБИТМ. Показано, что, используя полученные расчетные соотношения, можно оценить динамику изменения импульсного тока при развитии искрового канала в длинных воздушных промежутках. Отмечено, что полученные расчетные результаты соответствуют известным экспериментальным данным.

Список литературы: 1. Патент України №6279, МКІ НОЗКЗ/53. Генератор імпульсних струмів // Баранов М. І., Ігнатенко М. М., Колобовський А. К. – Опубл. Бюл. №5, 16.05.2005. – 4 с. 2. Патент України №15714, МКІ НОЗКЗ/53. Генератор великих імпульсних струмів блискавки // Баранов М. І., Ігнатенко М. М. – Опубл. Бюл. №7, 17.07.2006. – 4 с. 3. Игнатенко. Н.Н. Расчет переходных процессов в генераторах тока молнии с замыкателями нагрузки // Вісник

Національного технічного університету "ХПІ". Зб. наук. праць. Тем. вип.: Техніка та електрофізика високих напруг. – Харків: НТУ "ХПІ". – 2009. – №11. – С. 38-45. 4. Игнатенко. Н.Н. Выбор длины воздушных промежутков разрядников замыкателей нагрузки в кроубар-генераторах импульсного тока молнии // Вісник Національного технічного університету "ХПІ". Зб. наук. праць. Тем. вип.: Техніка та електрофізика високих напруг.- Харків: НТУ "ХПІ".- 2009. №39. – С. 64-69. 5. Игнатенко. Н.Н. Приближенный расчет скорости движения искрового канала в воздушных промежутках разрядников замыкателей нагрузки генераторов импульсных токов молнии // Вісник Національного технічного університету "ХПІ". Зб. наук. праць. Тем. вип.: Техніка та електрофізика високих напруг.– Харків: НТУ "ХПІ".– 2010. – №18. – С. 80-84. 6. Техника высоких напряжений: теоретические и практические основы применения: Пер. с нем. / М. Бейер, В. Бёк, К. Мёллер, В. Цаенгель; Под ред. В.П. Ларионова. - М.: Энергоатомиздат, 1989. – 555 с. 7. Кремнев В.В., Месяи Г.А. Методы умножения и трансформации импульсов в сильноточной электронике. – Новосибирск: Наука, 1987. – 224 с. 8. Техника высоких напряжений / Под ред. Л.И. Сиротинского. Часть первая – М.-Л.: Госэнергоиздат, 1951. – 292 с. 9. Иоссель Ю.Я., Кочанов Э.С., Струтинский М.Г. Расчет электрической емкости. – Л.: Энергоиздат, 1981. – 288 с. 10. Кнопфель Г. Сверхсильные импульсные магнитные поля. - М.: Мир, 1972. - 391 с. 11. Сукачев А.П. Теоретические основы электротехники. Ч. 1. Физические основы электротехники. Харьков: Издательство ХГУ, 1959 – 460 с. 12. Бронштейн И.Н., Семендяев К.А. Справочник по математике. - М.: Наука, 1964. - 608 с.

> Поступила в редколлегию 4.01.2011 Рецензент д.т.н., проф. Рудаков В.В.