УДК 681.513.3:681.5.033

А.А. ХУДЯЕВ, канд. техн. наук, доц., НТУ "ХПИ", Харьков *Д.Г. ЛИТВИНЕНКО*, аспирант, НТУ "ХПИ", Харьков

ИТЕРАЦИОННОЕ ПОДЧИНЕННОЕ УПРАВЛЕНИЕ СЛЕДЯЩИМИ ЭЛЕКТРОПРИВОДАМИ

Подані варіанти структурних схем та результати порівняльного аналізу якості ітераційних триканальних слідкуючих електроприводів з різним типовим настроюванням каналів керування.

Приводятся варианты структурных схем и результаты сравнительного анализа качества итерационных трехканальных следящих электроприводов с различной типовой настройкой каналов управления.

Введение. Высокоточные электромеханические воспроизводящие системы необходимы для управления следящими электроприводами (ЭП) роботов, манипуляторов, механизмов подач станков с ЧПУ, гироскопов, рулевых, орудийных и антенных установок, радиотелескопов, синхронных генераторов и паровых турбин повышенной точности вращения, и других динамичных объектов и механизмов точного управления промышленного и специального назначения.

Для эффективного повышения динамической точности воспроизведения управляющих воздействий различными следящими ЭП, в том числе с типовой настройкой, целесообразно применять многоканальные системы "грубого" и "точного" управления. В настоящее время многоканальные системы "грубого" и "точного" управления ЭП, основанные на итерационном (от лат. *itarativus* – многократный) принципе последовательных приближений, объединяют в общем классе итерационных многоканальных систем автоматического управления (САУ) [1-4].

Постановка задачи. Итерационные многоканальные следящие САУ в общем случае состоят из N автономных каналов управления, в каждый из которых входит соответствующий ЭП с необходимыми элементами. Практически число каналов N для высокоточных систем большой мощности может доходить до 4 [3,4]. Будем предполагать, что все ЭП имеют подчиненное управление с типовой настройкой или используют типовые корректирующие устройства (КУ) в основном контуре управления и соединяются с общей нагрузкой, например, че-

рез дифференциальные редукторы (механические дифференциалы) – МД, в которых происходит сложение движений приводов отдельных каналов. Такие системы будем называть итерационными многоканальными следящими ЭП с типовой настройкой каналов.

Рассмотрим практически важный случай, когда N=3, т.е. когда в итерационной следящей системе используются три автономных привода, функционирующие (взаимодействующие между собой) по итерационному [4-6] или близкому к нему алгоритмам. В качестве возможных рассмотрим три типа итерационных трехканальных следящих ЭП с типовой настройкой каналов, структурные схемы которых приведены на рис. 1-3 [7]. На схемах обозначены: $R_1^*(p)$, $R_2^*(p)$ и $R_3^*(p) - дифференциальные операторы первого (грубого) К-1, второго (компенсирующего) К-2, и третьего (точного) К-3 разомкнутых ЭП по скорости с учетом соответствующих усилительно-регулирующих и исполнительных элементов и устройств; <math>K_{\text{РП},1}(p)$, $K_{\text{РП},2}(p)$ и $K_{\text{РП},3}(p) -$ операторы регуляторов (или КУ) контуров положения соответственно тех же каналов; МД1 и МД2 – первый и второй дифференциальные редукторы; p=d/dt – оператор дифференцирования по времени t.

В настоящей статье выполним сравнительный анализ динамических и точностных показателей качества функционирования таких итерационных трехканальных следящих ЭП с различной настройкой каналов управления без учета потерь в дифференциалах и нагрузки на выходном валу МД2. При этом предполагается, что отдельные внутренние контуры управления в каналах могут быть как замкнутыми, так и разомкнутыми.

Рис. 1.

Рис. 2.

Материалы исследования. Следящей системой по скорости принято называть замкнутую систему, скорость, на выходе которой пропорциональна входному напряжению. В связи с этим систему, структура которой изображена на рис.1, условно будем называть трех-канальной следящей системой типа "*скорость-скорость*". Фактически такая система соответствует возможной разомкнутой системе управления по углу $\Theta(t)$ с итерационным трехканальным следящим контуром скорости, т.е. представляет собой итерационный трехканальный следящий ЭП по скорости входного сигнала $p \Theta(t) \equiv \Theta(t) = \omega(t)$. При этом контуры управления токами приводов каналов могут быть как замкнутыми (с подчиненной настройкой), так и разомкнутыми.

Систему, структурная схема которой изображена на рис. 2, назовем трехканальной следящей системой типа "*скорость-угол*". По сути, такая трехканальная система представляет собой комбинированный итерационный трехканальный следящий ЭП по углу $\Theta(t)$. Такой ЭП включает в качестве разомкнутого контура управления следящий ЭП по скорости первого, грубого канала К-1, а в качестве замкнутого контура – итерационный двухканальный следящий ЭП по углу на базе компенсирующего К-2 и точного К-3 каналов с внутренними замкнутыми (с подчиненной настройкой) или разомкнутыми контурами скорости.

Систему, структуры которой изображены на рис. 3, будем называть трехканальной следящей системой типа "*угол-угол*". Она может быть выполнена, как минимум, в двух вариантах, обозначенных на рис. 3 через *а* и *б*. Отличие одного варианта от другого нетрудно уяснить из рассмотрения их структурных схем. Фактически трехканальная система на

рис. 3,*а* соответствует системе на рис. 2, но дополнительно имеет возможность последовательной коррекции разомкнутого контура положения грубого канала К-1. Поскольку в настоящей статье предполагается, что оператор дополнительного КУ $K_{KY,1}(p) = 1$, динамику данного варианта системы типа "*угол-угол*" анализировать не будем.

Система на рис. $3,\delta$ – это классический вариант итерационного трехканального следящего ЭП по углу $\Theta(t)$ с внутренними подчиненными контурами управления скоростью приводов отдельных каналов. Как сравнительные варианты настройки, контуры скорости и (или) тока всех трех каналов управления могут быть разомкнутыми. В данной структуре также предусмотрена возможность дополнительной коррекции контура положения основного канала K-1, но уже с помощью КУ с оператором $K_{OC,1}(p)$ в обратной связи (ОС) канала. Для упрощения анализа такой трехканальной САУ примем здесь, что $K_{OC,1}(p) = 1$.

Системы типа "*скорость-угол*" и "*угол-угол*" представляют собой позиционные следящие системы, т.е. такие системы, которые наиболее широко распространены в качестве следящих ЭП промышленного и специального назначения.

Для сравнительного анализа итерационных трехканальных следящих ЭП с типовой настройкой в качестве базовых приводов автономных каналов К-1, К-2, К-3 могут быть приняты глубокорегулируемые следящие ЭП постоянного тока с заданными соответствующими коэффициентами усиления k_i^* (*i*=1,2,3) используемые, например, в механизмах подач металлорежущих станков. Такие ЭП, в том числе с подчиненным управлением, могут быть построены на базе двигателей постоянного тока с независимым возбуждением (ДПТ НВ) серий П, ПС, ПГ, ДК, ПБВ или ПБСТ и других мощностью от 0,2 кВт до 20 кВт. Соединение отдельных приводов с общей нагрузкой может осуществляться через два планетарных дифференциальных редуктора: МД1 и МД2. Измерение углов и скоростей вращения в простейшем случае может быть выполнено, например, с помощью сельсинов и тахогенераторов постоянного тока.

При математическом и компьютерном моделировании трехканальных ЭП в качестве исполнительных двигателей (ИД) грубого К-1, компенсирующего К-2 и точного К-3 приводов приняты малоинерционные серийные ДПТ НВ соответственно типов ПГ-9, ПГ-4 и ПГ-2 с номинальной мощностью 9 кВт, 4 кВт и 2 кВт и широтно-имульсным управлением.

Будем предполагать, что при настройках автономных следящих

ЭП по скорости допускается перерегулирование в пределах $\sigma_i \% \leq 51\%$ (*i*=1,2,3). Тогда для трехканальной системы типа "*скорость-скорость*" (рис. 1) получим следующие операторы разомкнутых автономных каналов управления ЭП с различной синтезированной типовой настройкой при единичных главных отрицательных ОС.

1. Оператор *i*-го разомкнутого канала по скорости с активным последовательным дифференцирующим КУ (ДКУ) и разомкнутым контуром тока:

$$R_{i}^{*}(p) = \frac{k_{\nu \mathcal{K},i}^{*}(\tau_{\mathcal{K},i}p+1)}{(T_{\mathcal{K},i}p+1)(T_{\mathcal{Y}\mathcal{M},i}p+1)(T_{1,i}p+1)(T_{2,i}p+1)}, \quad i = 1, 2, 3, \qquad (1)$$

где $k_{\nu \#,i}^* = k_{\varepsilon_c,i} k_{yH,i} k_{yM,i} k_{d,i} k_{c,i}^*$ – заданный (желаемый) коэффициент усиления по скорости, включающий коэффициенты усиления измерителя рассогласования скорости $k_{\varepsilon_c,i}$, активного ДКУ (требуемое значение) $k_{yH,i}$, усилителя мощности (преобразователя энергии) $k_{yM,i}$, двигателя $k_{d,i} = (K_{d,i} \Phi_{HOM,i})^{-1}$ и обратной связи по скорости $k_{c,i}^*$ (при наличии ОС); $\tau_{\kappa,i}$ и $T_{\kappa,i} = \rho_i \tau_{\kappa,i}$ ($0 < \rho_i < 1$) – постоянные времени ДКУ; $T_{yM,i}$ – эквивалентная постоянная времени преобразователя энергии с системой широтно-импульсного управления; $T_{1,i}$ и $T_{2,i}$ – эквивалентные постоянные времени ИД:

$$T_{1(2),i} = 0.5 \left(T_{\mathrm{M},i} \pm \sqrt{T_{\mathrm{M},i}^2 - 4T_{\mathrm{M},i}T_{3,i}} \right), \qquad T_{2,i} < T_{1,i}.$$

Здесь: $T_{\text{м},i}$ и $T_{3,i}$ (*i*=1,2,3) – приведенные электромеханическая и электромагнитная постоянные времени ИД *i*-го канала; ρ_i – коэффициент ослабления пассивной дифференцирующей RC-цепи *i*-го канала, для которого обычно выполняется: $0,025 \le \rho_i \le 0,25$ (*i*=1,2,3).

На основании паспортных данных ИД и в результате настройки динамики каналов на допустимое перерегулирование по скорости в формуле (1) принято:

$$k_{\nu \#,1}^{*} = 40,36, k_{\nu \#,2}^{*} = 35,15, k_{\nu \#,3}^{*} = 35,0;$$

$$T_{M,1} = 28,8939 \cdot 10^{-3} c, \qquad T_{M,2} = 22,1249 \cdot 10^{-3} c, \qquad T_{M,3} = 12,8798 \cdot 10^{-3} c;$$

$$T_{3,1} = 2,3579 \cdot 10^{-3} c, \qquad T_{3,2} = 2,1468 \cdot 10^{-3} c, \qquad T_{3,3} = 2,0034 \cdot 10^{-3} c;$$

$$T_{YM,1} = 2,5 \cdot 10^{-4} c, \qquad T_{YM,2} = 2,0 \cdot 10^{-4} c, \qquad T_{YM,3} = 1,5 \cdot 10^{-4} c; \qquad (2)$$

 $\begin{aligned} \tau_{\kappa,1} &= 2,2502 \cdot 10^{-3} \text{ c}, \qquad T_{\kappa,1} &= 1,25 \cdot 10^{-4} \text{ c}, \qquad \rho_1 &= 5,5551 \cdot 10^{-2} \text{ ;} \\ \tau_{\kappa,2} &= 2,0479 \cdot 10^{-3} \text{ c}, \qquad T_{\kappa,2} &= 1,0 \cdot 10^{-4} \text{ c}, \qquad \rho_2 &= 4,4883 \cdot 10^{-2} \text{ ;} \\ \tau_{\kappa,3} &= 1,536 \cdot 10^{-3} \text{ c}, \qquad T_{\kappa,3} &= 7,5 \cdot 10^{-5} \text{ c}, \qquad \rho_3 &= 4,883 \cdot 10^{-2} \text{ .} \end{aligned}$

Отметим, что при учете нагрузки операторы разомкнутых каналов по моментам нагрузки $M_{c,i}(t)$ (i = 1,2,3), приведенным к валам соответствующих приводов, в данном случае могут быть представлены в виде

$$R_{M_c,i}(p) = \frac{k_{M_c,i}(T_{\mathfrak{I},i}\,p+1)}{T_{\mathfrak{M},i}T_{\mathfrak{I},i}\,p^2 + T_{\mathfrak{M},i}\,p+1}, \quad i = 1,2,3,$$

где $k_{M_c,i}$ – коэффициент передачи *i*-го канала по моменту нагрузки $M_{c,i}(t)$:

$$k_{M_c,i} = R_{\mathfrak{H},i} k_{\mathfrak{H},i}^2 = T_{\mathsf{M},i} (J'_i)^{-1} = R_{\mathfrak{H},i} c_{\mathsf{M},i}^2$$

Здесь: $R_{3,i}$ и J'_i – эквивалентное активное сопротивление якорной цепи и приведенный момент инерции ИД *i*-го канала; $c_{M,i} = k_{{\rm A},i}^{-1} = K_{{\rm A},i} \Phi_{{\rm HOM},i}$ – коэффициент передачи по моменту ИД *i*-го канала.

2. Оператор *i*-го разомкнутого канала по скорости с активным последовательным интегрирующим КУ (ИКУ) и разомкнутым контуром тока:

$$R_{i}^{*}(p) = K_{\text{MKY},i}(p)k_{\varepsilon_{c},i}k_{c,i}^{*}\frac{k_{\text{YM},i}}{T_{\text{YM},i}p+1}\frac{k_{\pi,i}}{(T_{1,i}p+1)(T_{2,i}p+1)} = \frac{\tilde{k}_{\nu_{\mathcal{K}},i}^{*}(T_{\text{K}2,i}p+1)}{(T_{\text{K}1,i}p+1)^{2}(T_{\text{YM},i}p+1)(T_{2,i}p+1)} \quad i = 1,2,3,$$
(4)

где $\tilde{k}_{v,k,i}^*$ – заданный (желаемый) коэффициент усиления по скорости, включающий требуемый коэффициент усиления ИКУ $\tilde{k}_{vh,i}$:

$$\widetilde{k}_{\nu \mathfrak{K},i}^{*} = k_{\nu \mathfrak{K},i}^{*} k_{\mathrm{YH},i}^{-1} \widetilde{k}_{\mathrm{YH},i} = k_{\varepsilon_{c},i} \widetilde{k}_{\mathrm{YH},i} k_{\mathrm{YM},i} k_{\mathrm{J},i} k_{c,i}^{*};$$

$$K_{\text{ику},i}(p) = \tilde{k}_{\text{ун},i} \frac{(T_{\kappa 2,i}p+1)^2}{(T_{\kappa 1,i}p+1)^2} \quad (T_{\kappa 2,i} < T_{\kappa 1,i});$$
(5)

$$\begin{split} T_{\kappa 1,i} & \mu T_{\kappa 2,i} - \text{постоянные времени ИКУ, для которых принято:} \\ T_{\kappa 2,i} &= \tilde{\rho}_i T_{\kappa 1,i} = T_{1,i} . \\ & \text{B} (4) & \mu (5) \text{ задано:} \\ & \tilde{k}_{\nu \pi,1}^* = 79,41, \tilde{k}_{\nu \pi,2}^* = 61,991, \tilde{k}_{\nu \pi,3}^* = 51,25 ; \\ & T_{\kappa 1,1} = 13,1579 \cdot 10^{-2} \text{ c}, T_{\kappa 2,1} = 2,6304 \cdot 10^{-2} \text{ c}, \tilde{\rho}_1 = 0,1999 ; \\ & T_{\kappa 1,2} = 9,5602 \cdot 10^{-2} \text{ c}, T_{\kappa 2,2} = 1,9125 \cdot 10^{-2} \text{ c}, \tilde{\rho}_2 = 0,2 ; \\ & T_{\kappa 1,3} = 5,2029 \cdot 10^{-2} \text{ c}, T_{\kappa 2,3} = 1,0398 \cdot 10^{-2} \text{ c}, \tilde{\rho}_3 = 0,1998 . \end{split}$$

3. Оператор *i*-го разомкнутого канала по скорости с активным последовательным ДКУ и подчиненным контуром тока, настроенным на технический оптимум (TO):

$$R_{i}^{*}(p) = \frac{k_{ax,i}^{*}(\tau_{\kappa,i} p + 1)^{2}}{p(T_{\kappa,i}' p + 1)^{2}(T_{0,i}^{2} p^{2} + 2\xi T_{0,i} p + 1)} (T_{\kappa,i}' = \rho_{i}' \tau_{\kappa,i}'), \quad i = 1, 2, 3,$$
(7)

где $k_{aж,i}^*$ – заданный (желаемый) коэффициент усиления по ускорению, включающий требуемый коэффициент усиления активного ДКУ $k'_{\text{vh},i}$:

$$k_{a\pi,i}^{*} = k_{yH,i}^{\prime} \frac{k_{\varepsilon_{c}} k_{\Pi,i} k_{c,i}^{*} R_{\mathfrak{I},i}}{k_{\tau,i} T_{\mathrm{M},i}} = k_{yH,i}^{\prime} \frac{k_{\varepsilon_{c}} k_{c,i}^{*} c_{\mathrm{M},i}}{k_{\tau,i} J_{i}^{\prime}}; \qquad (8)$$

 $T_{0,i} = \sqrt{2} T_{\mu,i}$ ($\tau'_{\kappa,i} \le T_{0,i}$) и $\xi = \sqrt{2}/2$ – эквивалентная постоянная времени и коэффициент демпфирования замкнутого контура тока. Здесь: $T_{\mu,i} = T_{ym,i}$ и $k_{r,i}$ – некомпенсируемая малая постоянная времени контура тока и коэффициент ОС по току *i*-го канала.

При моделировании в (7), (8) принято:

$$k_{a\kappa,1}^{*} = 3,1623 \cdot 10^{4} \text{ c}^{-1}, \ k_{a\kappa,2}^{*} = 3,7584 \cdot 10^{4} \text{ c}^{-1}, \ k_{a\kappa,3}^{*} = 4,9545 \cdot 10^{4} \text{ c}^{-1};$$

$$T_{0,1} = 3,5355 \cdot 10^{-4} \text{ c}, \ T_{0,2} = 2,8284 \cdot 10^{-4} \text{ c}, \ T_{0,3} = 2,1213 \cdot 10^{-4} \text{ c}; \quad (9)$$

$$\tau_{\kappa,1}' = 2,6503 \cdot 10^{-4} \text{ c}, \ T_{\kappa,1}' = 1,48933 \cdot 10^{-5} \text{ c}, \ \rho_{1}' = 5,6194 \cdot 10^{-2};$$

$$\tau_{\kappa,2}' = 2,1203 \cdot 10^{-4} \text{ c}, \ T_{\kappa,2}' = 1,1915 \cdot 10^{-5} \text{ c}, \ \rho_{2}' = 5,6194 \cdot 10^{-2};$$

$$\tau_{\kappa,3}' = 1,5902 \cdot 10^{-4} \text{ c}, \ T_{\kappa,3}' = 8,936 \cdot 10^{-6} \text{ c}, \ \rho_{3}' = 5,6194 \cdot 10^{-2}. \quad (10)$$

4. Оператор *i*-го разомкнутого канала по скорости с Прегулятором скорости и подчиненным контуром тока, настроенным на ТО:

$$R_{i}^{*}(p) = k_{pc,i} \frac{k_{\varepsilon_{c}} k_{c,i}^{*} R_{\mathfrak{I},i}}{k_{\mathsf{T},i} T_{\mathsf{M},i} c_{\mathsf{M},i} p(T_{\mu,i}' p + 1)} = \frac{1}{2T_{\mu,i}' p(T_{\mu,i}' p + 1)} = \frac{\tilde{k}_{\mathsf{a}\mathfrak{K},i}^{*}}{p(T_{\mu,i}' p + 1)}, \quad i = 1, 2, 3,$$
(11)

где $\tilde{k}_{a\pi,i}^* = 0.5 (T'_{\mu,i})^{-1}$ – заданный (желаемый) коэффициент усиления по ускорению; $T'_{\mu,i} = 2T_{\mu,i}$ – некомпенсируемая малая постоянная времени контура скорости; $k_{pc,i}$ – требуемый коэффициент усиления Прегулятора скорости:

$$k_{pc,i} = \frac{\tilde{k}_{a\kappa,i}^{*} k_{\tau,i} c_{M,i} T_{M,i}}{k_{\varepsilon_c} k_{c,i}^{*} R_{9,i}} = \frac{k_{\tau,i} J_i'}{2k_{\varepsilon_c} k_{c,i}^{*} c_{M,i} T_{\mu,i}'} \,.$$
(12)

В (11) и (12) задано:

$$\tilde{k}_{a\kappa,1}^{*} = 1,0 \cdot 10^{3} \text{ c}^{-1}, \qquad \tilde{k}_{a\kappa,2}^{*} = 1,25 \cdot 10^{3} \text{ c}^{-1}, \qquad \tilde{k}_{a\kappa,3}^{*} = 1,6667 \cdot 10^{3} \text{ c}^{-1};$$

$$T_{\mu,1}' = 5,0 \cdot 10^{-4} \text{ c}, \qquad T_{\mu,2}' = 4,0 \cdot 10^{-4} \text{ c}, \qquad T_{\mu,3}' = 3,0 \cdot 10^{-4} \text{ c}.$$
(13)

Нетрудно заметить, что в данном случае контур скорости *i*-го канала также настроен на ТО.

5. Оператор *i*-го разомкнутого канала по скорости с ПИрегулятором скорости и подчиненным контуром тока, настроенным на ТО:

$$R_{i}^{*}(p) = K_{PC,i}'(p) \frac{k_{\varepsilon_{c}}}{k_{\tau,i}(T_{\mu,i}'p+1)} \frac{k_{\varepsilon,i}^{*}R_{\mathfrak{I},i}}{T_{\mathsf{M},i}c_{\mathsf{M},i}p} = \frac{4T_{\mu,i}'p+1}{8(T_{\mu,i}')^{2}p^{2}(T_{\mu,i}'p+1)} = \frac{k_{q,\mathfrak{K},i}^{*}(4T_{\mu,i}'p+1)}{p^{2}(T_{\mu,i}'p+1)}, \quad i = 1, 2, 3,$$
(14)

где $k_{q,k,i}^* = 0.125 (T'_{\mu,i})^{-2}$ – заданный (желаемый) коэффициент усиления по рывку; $K'_{PC,i}(p)$ – оператор ПИ-регулятора скорости с требуемым коэффициентом усиления интегральной составляющей $k'_{pc,i} = 0.25k_{pc,i}(T'_{\mu,i})^{-1}$:

$$K'_{PC,i}(p) = k'_{pc,i} \frac{4T'_{\mu,i}p + 1}{p} = k_{pc,i} \frac{4T'_{\mu,i}p + 1}{4T'_{\mu,i}p} = \frac{k_{\tau,i}c_{m,i}T_{m,i}(4T'_{\mu,i}p + 1)}{8k_{\varepsilon_c}k^*_{c,i}R_{\mathfrak{I},i}(T'_{\mu,i})^2 p} = \frac{k_{\tau,i}J'_i(4T'_{\mu,i}p + 1)}{8k_{\varepsilon_c}k^*_{c,i}c_{m,i}(T'_{\mu,i})^2 p}.$$
(15)

В (14) с учетом (13) имеем:

 $k_{q,\mathrm{m},1}^* = 5,0.10^5 \text{ c}^{-2}, \ k_{q,\mathrm{m},2}^* = 7,813.10^5 \text{ c}^{-2}, \ k_{q,\mathrm{m},3}^* = 13,889.10^5 \text{ c}^{-2}.$ (16)

Отметим, что в случае (14), (15) контур скорости *i*-го канала настроен на так называемый симметричный оптимум (СО).

При настройках автономных позиционных следящих ЭП в системах типа "*скорость-угол*" (рис. 2) и "*угол-угол*" (рис. 3) будем полагать, что управление положением на выходе соответствующего трехканального следящего ЭП должно осуществляться практически без перерегулирования ($\sigma_{n,3}$ %=0). В этом случае апериодическую настройку динамики отдельных автономных приводов (в первую очередь грубого К-1 и компенсирующего К-2) полностью подчиним реализации поставленного условия (по величине перерегулирования в системе) без применения дополнительных корректирующих или ограничивающих устройств в каналах управления.

Вместе с тем, при имитационном (компьютерном) моделировании итерационных трехканальных позиционных систем для удобства принято: $\sigma_{n,3} \ll 1\%$, что не оказывает принципиального влияния на достоверность результатов исследований и практических выводов по работе. Тогда для трехканальных следящих ЭП типа "*скорость-угол*" и "*уголугол*" в соответствии с рис. 2 и 3 и введенными обозначениями получим следующие синтезированные операторы разомкнутых позиционных каналов (при единичных главных OC).

6. Для оператора *i*-го разомкнутого канала по положению с активным последовательным ДКУ и разомкнутыми контурами скорости и тока вместо (1) имеем:

$$R_{\Pi,i}^{*}(p) = \frac{\hat{k}_{\nu \mathcal{K},i}^{*}(\hat{\tau}_{\kappa,i} p+1)}{p(\hat{T}_{\kappa,i} p+1)(T_{\mathrm{yM},i} p+1)(T_{1,i} p+1)(T_{2,i} p+1)} (\hat{T}_{\kappa,i} p = \hat{\rho}_{i} \hat{\tau}_{\kappa,i}), \quad i = 1, 2, 3, \qquad (17)$$

где $\hat{k}_{\nu,\mathbf{x},i}^* = k_{\varepsilon,i} \hat{k}_{\mathrm{yH},i} k_{\mathrm{yH},i} k_{\mathrm{d},i} k_{\mathrm{fl},i}^*$ – заданный (желаемый) коэффициент усиления по скорости, включающий, помимо определенных ранее,

коэффициенты усиления измерителя рассогласования положения $k_{\varepsilon,i}$, активного ДКУ (требуемое значение) $\hat{k}_{\text{ун},i}$ и ОС по положению $k_{\pi,i}^*$ (при наличии ОС).

При моделировании в (17) задано:

$$\hat{k}_{\nu \pi,1}^{*} = 0.3514 \text{ c}^{-1}, \ \hat{k}_{\nu \pi,2}^{*} = 0.7108 \text{ c}^{-1}, \ \hat{k}_{\nu \pi,3}^{*} = 100.4 \text{ c}^{-1}, \hat{\tau}_{\kappa,1} = 2.6304 \cdot 10^{-2} \text{ c}, \ \hat{T}_{\kappa,1} = 2.6304 \cdot 10^{-4} \text{ c}, \ \hat{\rho}_{1} = 1.0 \cdot 10^{-2}; \hat{\tau}_{\kappa,2} = 1.9716 \cdot 10^{-2} \text{ c}, \ \hat{T}_{\kappa,2} = 1.9716 \cdot 10^{-4} \text{ c}, \ \hat{\rho}_{2} = 1.0 \cdot 10^{-2}; \hat{\tau}_{\kappa,3} = 1.0398 \cdot 10^{-2} \text{ c}, \ \hat{T}_{\kappa,3} = 1.0398 \cdot 10^{-4} \text{ c}, \ \hat{\rho}_{3} = 1.0 \cdot 10^{-2}.$$
(18)

7. Для оператора *i*-го разомкнутого канала по положению с активным последовательным ДКУ, разомкнутым контуром скорости и контуром тока, настроенным на ТО, вместо (7) и (8) имеем:

$$R_{\Pi,i}^{*}(p) = \frac{\hat{k}_{axk,i}^{*}(\hat{\hat{\tau}}_{\kappa,i}p+1)^{p}}{p^{2}(\hat{T}_{\kappa,i}p+1)^{3}(T_{0,i}^{2}p^{2}+\sqrt{2}T_{0,i}p+1)} \\ (\hat{T}_{\kappa,i}=\hat{\hat{\rho}}_{i}\hat{\hat{\tau}}_{\kappa,i}), \quad i=1,2,3,$$
(19)

где $\hat{k}^*_{\mathrm{ax},i}$ – заданный (желаемый) коэффициент усиления по ускорению, включающий требуемый коэффициент усиления активного ДКУ $\hat{k}_{\mathrm{vH},i}$:

$$\hat{k}_{a\pi,i}^{*} = \hat{k}_{yH,i} \frac{k_{\epsilon,i} k_{\pi,i} k_{\pi,i}^{*} R_{\mathfrak{I},i}}{k_{\tau,i} T_{M,i}} = \hat{k}_{yH,i} \frac{k_{\epsilon,i} k_{\pi,i}^{*} c_{M,i}}{k_{\tau,i} J_{i}'} .$$
(20)

Остальные параметры определены ранее.

При моделировании в (19) и (20) необходимо принять:

$$\hat{k}_{a\varkappa,1}^* \approx 8,32 \cdot 10^{11} \text{ c}^{-2}, \ \hat{k}_{a\varkappa,2}^* \approx 12,6 \cdot 10^{13} \text{ c}^{-2}, \ \hat{k}_{a\varkappa,3}^* \approx 15,55 \cdot 10^{15} \text{ c}^{-2};$$
 (21)
 $\hat{\hat{\tau}}_{\kappa,1} = 3,2901 \cdot 10^{-4} \text{ c}, \ \hat{T}_{\kappa,1} = 3,2901 \cdot 10^{-10} \text{ c}, \ \hat{\hat{\rho}}_1 = 1,0 \cdot 10^{-6};$
 $\hat{\hat{\tau}}_{\kappa,2} = 2,6321 \cdot 10^{-4} \text{ c}, \ \hat{T}_{\kappa,2} = 2,6321 \cdot 10^{-12} \text{ c}, \ \hat{\hat{\rho}}_2 = 1,0 \cdot 10^{-8};$
 $\hat{\hat{\tau}}_{\kappa,3} = 1,9741 \cdot 10^{-4} \text{ c}, \ \hat{T}_{\kappa,3} = 1,9741 \cdot 10^{-14} \text{ c}, \ \hat{\hat{\rho}}_3 = 1,0 \cdot 10^{-10}.$ (22)
Из (21), (22) нетрудно видеть, что практическая реализация авто-

номных ЭП с принятыми здесь требуемыми имитационными настройками каналов управления не представляется возможной!

8. Для оператора *i*-го разомкнутого канала по положению с активным последовательным ДКУ и подчиненным контуром скорости, настроенным на TO, аналогично (7) и (8) получим:

$$R_{\Pi,i}^{*}(p) = \frac{\hat{k}_{\nu,\mathbf{K},i}^{*} (\tau_{\mathbf{K},i}'' p + 1)^{2}}{p(T_{\mathbf{K},i}'' p + 1)^{2} \left[(T_{0,i}')^{2} p^{2} + \sqrt{2}T_{0,i}' p + 1 \right]} (T_{\mathbf{K},i}'' = \rho_{i}'' \tau_{\mathbf{K},i}''), \quad i = 1, 2, 3,$$
(23)

где $\hat{k}_{v,w,i}^*$ – заданный (желаемый) коэффициент усиления по скорости, включающий требуемый коэффициент усиления активного ДКУ $\hat{k}_{vh,i}$:

$$\hat{k}_{\nu \, \text{\tiny W},i}^{*} = \hat{k}_{\text{\tiny YH},i} \, \frac{k_{\epsilon,i} k_{\pi,i}^{*}}{k_{c,i}^{*}} \,; \tag{24}$$

 $T'_{0,i} = \sqrt{2}T'_{\mu,i} = 2\sqrt{2}T_{\mu,i} (\tau''_{\kappa,i} \le T'_{0,i})$ – эквивалентная постоянная времени замкнутого контура скорости. Остальные параметры определены ранее.

$$\hat{k}_{\nu \#,1}^{*} = 20 \ c^{-1}, \hat{k}_{\nu \#,2}^{*} = 25 \ c^{-1}, \hat{k}_{\nu \#,3}^{*} = 4200 \ c^{-1};$$

$$T_{0,1}' = 7,0711 \cdot 10^{-4} c, \quad T_{0,2}' = 5,6569 \cdot 10^{-4} c, \quad T_{0,3}' = 4,2426 \cdot 10^{-4} c; \quad (25)$$

$$\tau_{\kappa,1}'' = 6,8214 \cdot 10^{-4} \ c, \quad T_{\kappa,1}'' = 6,8214 \cdot 10^{-6} \ c, \rho_{1}'' = 1,0 \cdot 10^{-2};$$

$$\tau_{\kappa,2}'' = 5,4571 \cdot 10^{-4} \ c, \quad T_{\kappa,2}'' = 5,4571 \cdot 10^{-6} \ c, \rho_{2}'' = 1,0 \cdot 10^{-2};$$

$$\tau_{\kappa,3}'' = 4,0928 \cdot 10^{-4} \ c, \quad \rho_{3}'' = 1,0 \cdot 10^{-2}.$$

$$(26)$$

9. Для оператора *i*-го разомкнутого канала по положению с Прегулятором положения и подчиненным контуром скорости, настроенным на TO, аналогично (11) и (12) имеем:

$$R_{\Pi,i}^{*}(p) = \frac{k_{\varepsilon,i}k_{P\Pi,i}}{\left(T_{0,i}'\right)^{2}p^{2} + \sqrt{2}T_{0,i}'p + 1} \cdot \frac{k_{\Pi,i}^{*}}{k_{c,i}^{*}p} = \frac{k_{\nu,\pi,i}^{*}}{p\left[\left(T_{0,i}'\right)^{2}p^{2} + \sqrt{2}T_{0,i}'p + 1\right]}, \quad (27)$$

где $\hat{k}_{\nu \pi,i}^*$ – заданный (желаемый) коэффициент усиления по скорости; $k_{P\Pi,i}$ – требуемый коэффициент усиления П-регулятора положения:

$$k_{P\Pi,i} = \frac{k_{\nu \varkappa,i}^* k_{c,i}^*}{k_{\varepsilon,i} k_{\pi,i}^*} .$$
(28)

Здесь, как и в формулах (20) и (24), коэффициент $k_{n,i}^*$ учитывается только при наличии в *i*-м канале управления ОС по положению.

В (27) и (28) принято:

$$\hat{k}_{\nu \#,1}^* = 1,5 \ \mathrm{c}^{-1}, \qquad \hat{k}_{\nu \#,2}^* = 2,0 \ \mathrm{c}^{-1}, \qquad \hat{k}_{\nu \#,3}^* = 650 \ \mathrm{c}^{-1}.$$
 (29)

10. Для оператора *i*-го разомкнутого канала по положению с Прегулятором положения и подчиненным контуром скорости, настроенным на CO, вместо (27) и (28) имеем:

$$R_{\Pi,i}^{*}(p) = \frac{k_{\varepsilon,i}k'_{P\Pi,i}(4T'_{\mu,i}p+1)}{8(T'_{\mu,i})^{3}p^{3}+8(T'_{\mu,i})^{2}p^{2}+4T'_{\mu,i}p+1} \cdot \frac{k_{\Pi,i}^{*}}{k_{c,i}^{*}p} = \frac{\hat{k}_{\nu,\mathcal{K},i}^{*}(4T'_{\mu,i}p+1)}{p\left[8(T'_{\mu,i})^{3}p^{3}+8(T'_{\mu,i})^{2}p^{2}+4T'_{\mu,i}p+1\right]}, \quad i = 1,2,3,$$
(30)

где $\hat{k}_{v\pi,i}^*$ – заданный (желаемый) коэффициент усиления по скорости; $k'_{P\Pi,i}$ – требуемый коэффициент усиления П-регулятора положения:

$$k'_{P\Pi,i} = \frac{\bar{k}^*_{\nu_{\mathcal{K},i}} k^*_{\mathcal{C},i}}{k_{\varepsilon,i} k^*_{\pi,i}} .$$
(31)

Здесь, как и ранее, коэффициент $k_{\Pi,i}^*$ учитывается только при наличии в *i*-м канале ОС по положению; постоянные времени $T'_{\mu,i}$ (*i* = 1,2,3) заданы соотношением (13).

При моделировании в (30), (31) принято:

$$\hat{\vec{k}}_{\nu \mathbf{x},1}^* = 1,25 \text{ c}^{-1}; \ \hat{\vec{k}}_{\nu \mathbf{x},2}^* = 1,75 \text{ c}^{-1}; \ \hat{\vec{k}}_{\nu \mathbf{x},3}^* = 300 \text{ c}^{-1}.$$
 (32)

Обобщенная схема имитационной компьютерной модели итерационной трехканальной следящей САУ, позволяющая реализовать динамику всех рассмотренных выше типов итерационных трехканальных следящих ЭП (рис. 1-3) с синтезированной типовой, в том числе

подчиненной, настройкой каналов управления в линейных режимах работы их элементов (см. п. 1-10), приведена на рис. 4.

Рис. 4.

Отметим, что разработанная имитационная модель (рис. 4) позволяет при необходимости учитывать влияние на динамику трехканальных следящих ЭП с типовой настройкой момента нагрузки $M_c(t)$, приложенного к выходному валу МД2.

Результаты исследований. Наиболее показательные результаты сравнительной оценки качества итерационных трехканальных следящих ЭП с рассмотренной типовой настройкой каналов управления приведены в табл. 1-11 и на рис. 5-13.

В таблицах вариант настройки *В* трехканальной следящей САУ определяется в соответствии с приведенными выше вариантами настроек ее автономных каналов (см. п. 1-10.). Например, вариант "1-1-1" означает, что все три канала системы настроены в соответствии с п. 1 согласно формулам (1)-(3); вариант "1-8-8" – первый, грубый канал К-1 настроен в соответствии с п. 1, а каналы компенсирующий К-2 и точный К-3 – в соответствии с п. 8 согласно формулам (23)-(26), и.т.д. В табл. 1 и 6 представлены показатели качества переходных процессов (ПП) в автономных замкнутых каналах управления трехканальной сис-

№ ПП.	Канал	В	v_i^*	σ^*_i , %	$t_{\pi c,i}^{*}$	$t^{*}_{{ m per},i}$
	К-1	1	0	7,4	1,513 10-3	5,540 10-3
1	К-2	1	0	5,9	1,351 10 ⁻³	5,300 10 ⁻³
	К-3	1	0	10,9	9,042 10 ⁻⁴	4,952 10 ⁻³
	К-1	2	0	14,1	0,0148	0,0937
2	К-2	2	0	16,9	0,0134	0,0666
	К-3	2	0	26,4	8,619 10 ⁻³	0,0394
	К-1	3	1	22,5	9,883 10 ⁻⁵	$1,007 \ 10^{-3}$
3	К-2	3	1	21,5	8,223 10 ⁻⁵	8,257 10 ⁻⁴
	К-3	3	1	21,5	6,140 10 ⁻⁵	6,339 10 ⁻⁴
	К-1	4	1	4,3	$2,170\ 10^{-3}$	4,958 10 ⁻³
4	К-2	4	1	4,3	$1,737 \ 10^{-3}$	3,958 10 ⁻³
	К-3	4	1	4,3	1,268 10 ⁻³	3,155 10 ⁻³
	К-1	5	2	51,5	1,581 10 ⁻³	9,014 10 ⁻³
5	К-2	5	2	51,3	1,265 10-3	7,218 10 ⁻³
	К-3	5	2	50,5	9,309 10 ⁻⁴	5,285 10 ⁻³

Таблица 1 – Показатели качества ПП по скорости

Результаты сравнительной оценки точностных свойств одно-, двухи трехканальной систем управления электроприводом во временной и частотной области приведены в табл. 3, 7, 10 и табл. 4, 8, 11 соответственно. В таблицах приняты обозначения: v_i , v_i^* – порядок астатизма по задающему воздействию; i = 1,2,3 – индекс; σ_i , σ_i^* – перерегулирование; $t_{\text{пс.}i}^*$ – время первого согласования по уровню 0,1; $t_{\text{рег.}i}^*$ – время регулирования по уровню 0,5; ε_i – статическая ошибка воспроизведения при $U_{sc}(t) = 1(t)$; $\varepsilon_{\mathcal{I}i}$ – динамическая ошибка воспроизведения входного сигнала при $U_{3c}(t) = t^2$; $\omega_{\Pi,i}$ – полоса воспроизводимых частот по уровню 0,707.

На рис. 5-13 обозначено: цифрами "1", "2" и "3" – графики динамических характеристик соответственно одно-, двух- и трехканальной систем; пунктирными кривыми и цифрами "Зав" и "Зит" – графики переходных процессов (ПП) в третьем, точном канале К-3, функционирующем в автономном и итерационном режимах работы.

№ пп.	В	Канал	v _i	σ_i	$t_{\mathrm{nc},i}^{*}$	$t^{*}_{\mathrm{per},i}$	Рисунок
	1 1 1	К-1, К-2	0	46,0	7,340 10 ⁻⁴	4,634 10-3	\mathbf{p} \mathbf{u} \mathbf{c} \mathbf{c}
	1-1-1	К-1, К-2, К-3	0	75,2	4,820 10-4	5,151 10 ⁻³	рис. 5,а
2	2 2 2	К-1, К-2	2	69,0	5,293 10 ⁻⁵	4,999 10 ⁻⁴	B HO 6 <i>a</i>
	3-3-3	К-1, К-2, К-3	3	97,0	3,586 10 ⁻⁵	5,491 10 ⁻⁴	рис. 0,а
3	555	К-1, К-2	4	111,8	9,408 10 ⁻⁴	0,0125	\mathbf{p} \mathbf{u} \mathbf{c} \mathbf{c}
	5-5-5	К-1, К-2, К-3	6	145,7	6,510 10 ⁻⁴	0,0149	рис. 7,а

Таблица 2 – Показатели качества ПП по скорости

Продолжение таблицы 2

N₂	Выигрыш в быстродействии по сравне-		Выигрыш во времени		
пп.	нию с		регулирования по сравнению с		
	К-3	САУ	К-3	САУ	
1	1,232	1	1,069	1	
	1,876	1,523	0,961	0,90	
2	1,160	1	1,268	1	
	1,712	1,476	1,154	0,91	
3	0,989	1	0,423	1	
	1,430	1,445	0,355	0,839	

Для различных вариантов настроек итерационных трехканальных следящих электроприводов на рис. 5-13 приведены: a –переходные функции; δ – частотные характеристики; s и e – отработка параболического входного сигнала; ∂ и e – отработка синусоидального входного сигнала с частотой 1 и 10 Гц соответственно.

ISSN 2079-3944. Вісник НТУ ''ХПІ''. 2011. № 4

В	Канал	ε		ε _{Ді} г	іри <i>t</i> , <i>с</i>	1	Выигрыш в точности по	сравнению с К-1 при t, c	Выигрыш в очности по по сравнению с	К-1 и К-2 при t, c	Рисунок
			0,02	1	5	20	1	20	1	20	
	К-1	0,024	3,52 10 ⁻⁵	0,025	0,611	9,71	1	1	-	-	9 110
-1-1	К-1, К-2	0,001	2,21 10 ⁻⁶	7,30 10 ⁻⁴	0,017	0,27	34,8	36,0	1	1	рис. 5,в рис
1	К-1, К-2, К-3	6,25 10 ⁻⁵	9,01 10 ⁻⁸	2,10 10 ⁻⁵	5,01 10 ⁻⁴	7,5 10 ⁻³	1210	1294	34,8	36	5, <i>2</i>
	К-1	0,012	2,27 10 ⁻⁴	0,019	0,341	5,09	1	1	-	-	
-2-2	К-1, К-2	2,01 10 ⁻⁴	9,60 10 ⁻⁵	3,75 10 ⁻⁴	5,60 10 ⁻³	0,08	49,6	62,1	1	1	
5	К-1, К-2, К-3	4,4 10 ⁻⁶	5,97 10 ⁻⁶	8,40 10 ⁻⁶	1,15 10 ⁻⁴	1,57 10 ⁻³	2214	3245	44,6	52,2	
	К-1	0	7,51 10 ⁻⁷	6,30 10 ⁻⁵	3,0 10 ⁻⁴	1,30 10 ⁻³	1	1	-	-	
3-3	К-1, К-2	0	1,60 10 ⁻⁹	1,65 10 ⁻⁹	1,65 10 ⁻⁹	1,65 10 ⁻⁹	$3,8 \\ 10^{9}$	7,89 10^5	1	1	рис. 6,в
3-	К-1, К-2, К-3	0	4,0 10 ⁻¹²	0	0	0	x	œ	œ	x	рис. 6,г
5-5-5	K-1	0	4,5 10 ⁻⁶	4,5 10 ⁻⁶	4,5 10 ⁻⁶	4,50 10 ⁻⁶	1	1	-	-	рис. 7,в рис. 7,г

Таблица 3 – Динамическая погрешность САУ по задающему воздействию

Рис. 5.

ISSN 2079-3944. Вісник НТУ ''ХПІ''. 2011. № 4

		$\omega_{\Pi,i}$		ние опус- равне- г1,	ние опус- хавне- К-2,	ж
В	Канал	Гų	рад/с	Расшире полосы пр кания по ср нию с К	Расшире полосы пр кания по ср нию с K-1, раз	Рисунс
	К-1	343,8	2,16 10 ³	1	-	
1-1-1	К-1, К-2	628,8	3,95 10 ³	1,82	1	рис. 5,б
	К-1, К-2, К-3	926,5	5,82 10 ³	2,70	1,47	,
	К-1	30,7	193	1	-	
2-2-2	К-1, К-2	56,4	354	1,83	1	
	К-1, К-2, К-3	84,7	532	2,76	1,50	
	К-1	4935	3,10 10 ⁴	1	-	
3-3-3	К-1, К-2	8580	5,39 10 ⁴	1,74	1	рис. 6,б
	К-1, К-2, К-3	12290	7,72 10 ⁴	2,49	1,43	
	К-1	308,8	1,94 10 ³	1	-	
5-5-5	К-1, К-2	493,4	3,10 10 ³	1,61	1	рис. 7,б
	К-1, К-2, К-3	692,3	4,35 10 ³	2,24	1,40	,

Таблица 4 – Качество воспроизведения задания по скорости

Таблица 5 – Ошибки воспроизведения синусоидального сигнала.

E.

В	Канал	c	Запаздывание по фазе рад (<i>угл. град</i>) на частоте <i>f</i> . Гп		Запаздывания по фазе по сравнению	с К-1 (разы) на частоте <i>f</i> , Гц	Запаздывания по фазе по	сравнению с К-1, К-2 (разы) на частоте <i>f</i> , Гц	Рисунок
		1	4	10	1	10	1	10	
	К-1	4,08 10 ⁻³ (0,234)	0,0163 (0,934)	0,0408 (2,34)	1	1	-	-	
1-1-1	K-1, K-2	1,95 10 ⁻⁴ (0,011)	7,79 10 ⁻⁴ (0,0446)	1,95 10 ⁻³ (0,112)	20,9	20,9	1	1	рис.5,0 рис.5,е
	K-1, K-2, K-3	6,57 10 ⁻⁶ (3,810 ⁻⁴)	2,45 10 ⁻⁵ (1,4 10 ⁻³)	3,8 10 ⁻⁵ (2,1 10 ⁻³)	621	1082	29,8	51,7	
	К-1	0,02 (1,14)	0,117 (6,70)	0,476 (27,27)	1	1	-	-	
2-2-2	К-1, К-2	3,8 10 ⁻⁴ (0,0216)	8,0 10 ⁻³ (0,461)	0,0267 (1,53)	52,5	17,8	1	1	
	К-1, К-2, К-3	3,6 10 ⁻⁶ (2,1 10 ⁻⁴)	5,4 10 ⁻⁴ (0,0310)	0,0449 (2,57)	5480	10,6	104	0,60	

ISSN 2079-3944. Вісник НТУ ''ХПІ''. 2011. № 4

	Продолжение таблицы 5										
	К-1	1,98 10 ⁻⁴ (0,0113)	1,25 10 ⁻³ (0,072)	1,9 10 ⁻³ (0,113)	1	1	-	-			
3-3-3	К-1, К-2	3,1 10 ⁻¹⁰ (1,8 10 ⁻⁸)	7,5 10 ⁻¹⁰ (4,3 10 ⁻⁸)	1,01 10 ⁻⁸ (5,7 10 ⁻⁷)	6,3 10 ⁻⁵	1,9 10 ⁵	1	1	рис.6,∂ рис.6,е		
	К-1, К-2, К-3	3,52 10 ⁻⁹ (2,0 10 ⁻⁷)	9,2 10 ⁻⁹ (5,37 10 ⁻ ⁷)	2,70 10 ⁻⁸ (1,5 10 ⁻⁶)	56240	73330	0,09	0,37			
	К-1	7,8 10 ⁻⁷ (4,5 10 ⁻⁵)	5,7 10 ⁻⁵ (3,2 10 ⁻³)	7,98 10 ⁻⁴ (0,046)	1	1	-	-			
5-5-5	К-1, К-2	6,3 10 ⁻¹¹ (3,6 10 ⁻⁹)	8,8 10 ⁻⁸ (5,0 10 ⁻⁶)	8,61 10 ⁻⁶ (4,9 10 ⁻⁴)	12500	92,7	1	1	рис.7,∂ рис.7,е		
	К-1, К-2, К-3	6,2 10 ⁻¹⁵ (3,6 10 ⁻¹³)	$2,5\ 10^{-12}$ (1,4 10 ⁻¹⁰)	3,5 10 ⁻⁸ (2,0 10 ⁻⁶)	$125 \\ 10^{6}$	22290	1 104	241			

Рис. 6.

ISSN 2079-3944. Вісник НТУ ''ХПІ''. 2011. № 4

Рис. 7.

Анализируя полученные результаты, можно сделать вывод, что трехканальные следящие ЭП, построенные и функционирующие по итерационному принципу, обладают новыми, кардинально улучшенными качественными показателями по сравнению с традиционными одноканальными типовыми следящими ЭП.

Так, итерационные трехканальные следящие ЭП типа "*скорость-скорость*" с подчиненной настройкой контуров токов автономных каналов обладают астатизмом по управлению не ниже третьего порядка ($v_3 \ge 3$) и отрабатывают задающие воздействия на порядок лучше аналогичных трехканальных ЭП с разомкнутыми внутренними контурами каналов (табл. 1-4 и рис. 5-7).

Наилучшие результаты по быстродействию и динамической точности воспроизведения задающих воздействий, которые могут быть получены в рассмотренных вариантах таких систем, дает применение в контурах скорости автономных каналов активных последовательных ДКУ. Соответствующая трехканальная система с подчиненными контурами токов, настроенными на ТО, обеспечивает при допустимом перерегулировании время первого согласования по скорости на уровне $t_{nc,3}$ = 3,59·10⁻⁵ с и полосу пропускания свыше 12 кГц (рис. 6). В случае же применения в контурах скорости аналогичных ИКУ может быть обеспечена наименьшая установившаяся ошибка в системе (табл. 3). Однако при этом существенно сужаются полосы пропускания автономных каналов, что негативно ска-

зывается на таких показателях качества трехканального следящего ЭП как быстродействие и динамическая точность (табл. 2 и 4).

Из табл. 1-4 также нетрудно видеть, что при любых рассмотренных типовых настройках каналов полосы пропускания соответствующих трехканальных ЭП типа "*скорость-скорость*" расширяются более чем в 2,2 раза, а их быстродействие, определяемое по времени первого согласования $t_{nc,3}$, возрастает более чем в 2,1 раза по сравнению с аналогичными одноканальными следящими системами (первым грубым каналом К-1). При настройке же автономных каналов на СО порядок астатизма трехканальной системы достигает $v_3 = 6$, а ее быстродействие по сравнению даже с автономным третьим, точным каналом К-3 возрастает в 1,43 раза при сохранении требуемых запасов устойчивости в системе (рис. 7). Это потенциально определяет высочайшие динамические свойства трехканальных следящих ЭП типа "*скоростьскорость*".

В табл. 6-12 приведены сравнительные оценки качества итерационных трехканальных следящих ЭП. Время первого согласования по уровню 0,1 % обозначено $t_{nc,i}^*$, время регулирования по уровню 0,5 % обозначено $t_{ne,i}^*$.

						-
№ п/п	Канал	В	v_i^*	σ_i^*	$t_{nc,i}^*$	$t^*_{per,i}$
	К-1	6	1	0	19,669	15,085
1	К-2	6	1	0	9,707	7,442
	К-3	6	1	0	0,0424	0,0349
	К-1	8	1	0	0,350	0,266
2	К-2	8	1	0	0,278	0,213
	К-3	8	1	0	$6,650\ 10^{-4}$	$2,785 \ 10^{-3}$
	К-1	9	1	0	4,60	3,530
3	К-2	9	1	0	3,460	2,650
	К-3	9	1	0,5	3,388 10 ⁻³	3,830 10 ⁻³
	К-1	10	1	0	5,560	4,245
4	К-2	10	1	0	3,940	3,030
	К-3	10	1	0	0,0242	0,0185

Таблица 6 – Показатели качества ПП по положению

№ пп	В	Канал	v _i	σ_i	t _{nc,i}	t _{per,i}	Рисунок				
1	666	К-1, К-2	2	12,5	1,952	14,984	BHO 8 a				
1	0-0-0	К-1, К-2, К-3	3	1,0	0,0308	0,887	рис. о,а				
2	000	К-1, К-2	2	13,2	0,0448	0,321	рио 0 <i>а</i>				
Z	0-0-0	К-1, К-2, К-3	3	0,94	5,998 10 ⁻⁴	0,0215	рис. 9,а				
3	10 10 10	К-1, К-2	2	13,3	0,671	4,866	$p_{\rm HC} = 10 a$				
5	10-10-10	К-1, К-2, К-3	3	0,93	0,0158	0,297	рис. 10,а				

Таблица 7 – Показатели качества ПП САУ по положению

Продолжение таблицы 7.

№ пп	Выигрыш по быстродействию по сравнению с К-3, <i>раз</i>	Выигрыш по быстродействию по сравнению с К-1, К-2, <i>раз</i>	Выигрыш по времени регулирова- ния по срав- нению с К-3, <i>раз</i>	Выигрыш по времени регу- лирования по сравнению с К- 1, К-2, <i>раз</i>
1	0,022	1	2,33 10 ⁻³	1
1	1,38	63,4	0,039	16,9
2	0,015	1	8,67 10 ⁻³	1
2	1,11	74,7	0,130	14,9
3	0,036	1	$3,80\ 10^{-3}$	1
5	1,53	42,5	0,062	16,4

Таблица 8 – Динамическая погрешность по задающему воздействию

В	Канал	ε _i	1	€ _{Ді} п	іри <i>t</i> , с	20	Вынгрыш по точности	по сравно- нию с К-1, раз при t, с	Выигрыш по точности по сравне-	нию с К-1, К-2, <i>ра</i> з при <i>t</i> с	Рисунок
	V 1	0	0.80	15.07	41.22	20	1	20	1	20	
666	K-1, K-2	0	0,89	5,51	7,55	8	1,26	12,2	1	1	рис.8, <i>в</i>
0-0-0	К-1, К-2, К-3	0	0,012	8 10 ⁻³	1,6 10 ⁻³	5 <u>1</u> 0 ⁻ 5	75,7	$1,95 \\ 10^{6}$	60,3	$1,6 \\ 10^5$	рис.8,г
	К-1	0	0,09	0,49	0,99	2,06	1	1	-	-	
	К-1, К-2	0	4 10-3	4 10 ⁻³	4 10-3	4 10 ⁻³	23,8	515	1	1	рис.9,в
0-0-0	К-1, К-2, К-3	0	1 10 ⁻¹⁰	0	0	0	$9,5 \\ 10^{8}$	8	4 10 ⁷	8	рис.9,г
10-10-	К-1	0	0,687	6,72	14,72	30,72	1	1	-	-	рис.10,в
10	К-1, К-2	0	0,395	0,909	0,914	0,914	1,74	33,6	1	1	рис.10,г

ISSN 2079-3944. Вісник НТУ ''ХПІ''. 2011. № 4

$\begin{array}{c cccc} K-1, \\ K-2, \\ K-3 \\ \end{array} 0 \begin{array}{c} 1,50 \\ 10^3 \\ 10^5 \end{array} 2,40$	5,0 10 ⁻⁸ 0	458 ∞	263 ∞	
---	---------------------------	-------	-------	--

№ пп		ω _{Πi} Ραcι		Расширение	Расширение		
	В	Канал	Гц	рад/с	пропускания по сравне- нию с К-1, раз	пропускания по сравне- нию с К-1, К-2, раз	Рисунок
		K-1	0,0557	0,35	1	-	
1	6-6-6	К-1, К-2	0,205	1,29	3,69	1	рис. 8,б
		К-1, К-2, К- 3	21,96	138	394	107	
		К-1	3,17	19,9	1	-	
2	8-8-8	К-1, К-2	8,75	55,0	2,76	1	рис. 9.б
		K-1, K-2, K- 3	923,1	5800	291,5	105,5	r
		K-1	0,197	1,24	1	-	
3	10-10-	К-1, К-2	0,594	3,73	3,0	1	рис.
5	10	K-1, K-2, K- 3	54,43	342	276	91,7	10,6

Таблица 9 – Качество воспроизведения задания по положению

Продолжение таблицы 9.

№ пп	Запазды фа рад (угл. f,	вание по азе, <i>град</i>) при <i>Гц</i>	Запаздывание по фазе по сравнению с К 1, <i>раз</i>		Запаздь сравнен	Рисунок		
	1	4	10	1	10	1	10	
	1,59 (90,9)	1,64 (93,7)	1,94 (110,9)	1	1	-	-	
1	1,45 (82,8)	1,61 (92,1)	1,72 (98,3)	1,1	1,1	1	1	рис.8,д, рис.8,е
	0,0609 (3,49)	0,249 (14,3)	0,610 (34,9)	26,1	3,2	23,8	2,8	
	0,304 (17,4)	0,892 (51,1)	1,24 (71,3)	1	1	-	-	
2	0,0364 (2,09)	0,530 (30,4)	1,04 (59,8)	8,4	1,2	1	1	рис.9.д.
2	9,43 10-5 (5,40 10 ⁻³)	4,27 10 ⁻ 4 (0,0245)	0,0102 (0,585)	3226	122	386	102	рис.9,е
3	1,38 (78,8)	1,52 (87,1)	1,55 (88,9)	1	1	-	-	рис.10,д, рис.10,е
	1,22 (69,8)	1,48 (84,8)	1,53 (87,8)	1,1	1,01	1	1	

ISSN 2079-3944. Вісник НТУ ''ХПІ''. 2011. № 4

Рис. 8.

ISSN 2079-3944. Вісник НТУ "ХПІ". 2011. № 4

e

Рис. 10.

Таблица 10 – Показатели качества ПП по положению

№ пп	В	Канал	vi	σ_i	t _{nc,i}	t _{per,i}	Рисунок	
1	166	K1 K2 K3	1	0	6,465	4,961	$\mathbf{p}_{\mathbf{H}0} = 11 a$	
	1-0-0	K-1, K-2, K-3	2	1,0	0,0308	0,761	рис. 11,а	
2	388	К-1, К-2	2	0	0,156	0,119	рис 12 <i>а</i>	
	5-0-0	К-1, К-2, К-3	3	0,94	5,995 10 ⁻⁴	0,0170	рис. 12,и	
3	5 10 10	К-1, К-2	2	0	2,303	1,766	puo 12 a	
	5-10-10	К-1, К-2, К-3	3	0,91	0,0158	0,234	рис. 15,а	

Продолжение таблицы 10

№ пп	Выигрыш по быстродействию по сравнению с К-3, <i>раз</i>	Выигрыш по быстродейст- вию по сравне- нию с К-1 и К-2, <i>раз</i>	Выигрыш во времени регу- лирования по сравнению с К-3, раз	Выигрыш во времени регу- лирования по сравнению с К-1, К-2, <i>раз</i>
1	6,57 10 ⁻³	1	7,03 10-3	1
	1,38	210	0,049	6,93
2	4,26 10 ⁻³	1	0,0234	1
	1,11	260	0,164	7
3	0,0106	1	0,0105	1

Таблица 11 – Динамическая точность по задающему воздействию											
$B \qquad \begin{array}{c} \text{Ka-}\\ \text{Ka-}\\ \text{Han} \end{array} \epsilon_i$			ε _{д, і} при <i>t, с</i>			Выигрыш в точности по	сравнению с К-1, <i>раз</i>	Выигрыш в точностипо сравнению с	K-1, K-2, pa3	Рисунок	
			1	5	10	20	1	20	1	20	
	К-1	0	0,026	0,61	2,43	9,65	1	1	-	-	
166	К-1, К-2	0	0,018	0,18	0,413	0,88	1,39	11,0	1	1	рис.11,в
1-0-0	К-1, К-2, К-3	0	2,94 10 ⁻⁴	4,5 10 ⁻⁴	4,5 10 ⁻⁴	4,5 10 ⁻⁴	86,7	21440	62,2	1956	рис.11,г
	К-1	0	6,50 10 ⁻⁵	3,50 10 ⁻⁴	6,50 10 ⁻⁴	1,30 10 ⁻³	1	1	-	-	
3-8-8	К-1, К-2	0	1,50 10 ⁻⁶	2,0 10 ⁻⁶	2,50 10 ⁻⁶	3,0 10 ⁻⁶	43,3	433	1	1	рис.12,6
	К-1, К-2, К-3	0	1,0 10 ⁻¹¹	0	0	0	$6,5 \\ 10^{6}$	8	$1,5 \\ 10^5$	8	рис.12,2
	К-1	0	2,60 10 ⁻⁴	1,28 10 ⁻³	2,55 10 ⁻³	5,15 10 ⁻³	1	1	-	-	
5-10-10	К-1, К-2	0	8,0 10 ⁻⁵	8,0 10 ⁻⁵	8,50 10 ⁻⁵	8,50 10 ⁻⁵	3,25	60,6	1	1	рис.13,6
	К-1, К-2, К-3	0	4,0 10 ⁻⁸	1,10 10 ⁻⁹	0	0	6500	x	2000	8	рис.13,2

Таблица 11 – Динамическая точность по задающему воздействию

٦

Таблица 12 – Качество воспроизведения задания по положению

			0	$\mathfrak{D}_{\Pi,i}$	Расширение полосы пропус-		
№ пп	В	Канал	Гц	рад/с	кания по срав- нению с К-1, К-	Рисунок	
		К-1	_	_	2, pus		
1	1-6-6	К-1, К-2	0.170	1.07	1	рис.11.б	
		К-1, К-2, К-3	21,96	138	129	1 /	
		К-1	-	-	-		
2	3-8-8	К-1, К-2	7,04	44,2	1	рис.12,б	
		К-1, К-2, К-3	920,1	5781	131		
	5 10	К-1	-		-		
3	10	К-1, К-2	0,447	3,0	1	рис.13,б	
	10	К-1, К-2, К-3	54,0	339	113		

ISSN 2079-3944. Вісник НТУ "ХПІ". 2011. № 4

продолжение таолицы 1.	Іродолжение таблиць	л 1	2
------------------------	---------------------	-----	---

№ пп	Запаз; рад (уа	Запаздывание по фазе, рад (угл. град) при f, Гц дазе		Запазды фазе по с К-	вание по сравнению 1, <i>раз</i>	Запазды фазе по ср К-1, К	Рисунок	
	I 0.40.10 ⁻³	4	10	1	10	1	10	
	(0,486)	(1,014)	(2,56)	1	1	-	-	
1- 6-6	4,87 10 ⁻³ (0,279)	0,0181 (1,037)	0,0434 (2,49)	1,74	1,03	1	1	рис.11,∂ рис.11,е
	1,48 10 ⁻³ (0,0848)	6,28 10 ⁻³ (0,360)	0,0224 (1,28)	5,73	2,0	3,29	1,94	
	2,39 10 ⁻⁴ (0,0137)	9,55 10 ⁻⁴ (0,0547)	2,32 10 ⁻³ (0,133)	1	1	-	-	
3- 8-8	4,24 10 ⁻⁶ (2,43 10 ⁻⁴)	2,01 10 ⁻⁴ (0,0115)	1,45 10 ⁻³ (0,0828)	56,3	1,61	1	1	рис.12,д рис.12,е
	4,40 10 ⁻⁸ (2,52 10 ⁻⁶)	2,20 10 ⁻⁶ (1,26 10 ⁻⁴)	1,45 10 ⁻⁵ (8,28 10 ⁻⁴)	5430	160,5	96,4	100	
	2,36 10 ⁻³ (0,135)	6,28 10 ⁻³ (0,360)	0,0157 (0,90)	1	1	-	-	
5- 10-	9,24 10 ⁻⁴ (0,0529)	9,05 10 ⁻⁴ (0,0518)	2,20 10 ⁻³ (0,126)	2,56	7,14	1	1	рис.13,д рис.13,е
10	1,04 10 ⁻⁵ (5,94 10 ⁻⁴)	8,80 10 ⁻⁵ (5,04 10 ⁻³)	1,70 10 ⁻³ (0,0970)	228	9,24	89,1	1,29	,.

ISSN 2079-3944. Вісник НТУ ''ХПІ''. 2011. № 4

e

Г

Рис. 11.

Трехканальные позиционные ЭП типа "угол-угол" (табл. 6-9 и рис.

8-10) и "*скорость-угол*" (табл. 10-12 и рис. 11-13) при любых рассмотренных типовых настройках автономных каналов обладают астатизмом по управлению третьего порядка ($v_3 = 3$), что указывает на их высокие потенциальные точностные возможности.

В таких системах, как и в соответствующих трехканальных следящих ЭП типа "*скорость-скорость*", наилучшие результаты по быстродействию и динамической точности могут быть достигнуты при использовании во внешних контурах автономных каналов активных последовательных ДКУ и применении подчиненной настройки внутренних контуров скорости. В этом случае в трехканальных позиционных системах с подчиненными контурами скорости, настроенными на TO, без снижения запасов устойчивости обеспечивается время первого согласования по положению на уровне $t_{nc,3} = 5,998 \cdot 10^{-4}$ с (что почти на 10 % меньше аналогичного показателя для автономного третьего, точного канала К-3) и достигается полоса пропускания свыше 900 Гц (рис. 9).

Высокие показатели качества функционирования трехканальных позиционных ЭП наблюдаются и при применении П-регуляторов положения в автономных каналах управления (рис. 10).

Кроме того, для трёхканальных систем типа "*угол-угол*" из табл. 5,6 и табл. 8 видно, что для рассмотренных типовых настроек каналов управления полосы пропускания соответствующих двухканальных ЭП расширяются более чем в 2,7 раза, а трехканальных ЭП – более чем в 270 раз по сравнению с аналогичными одноканальными позиционными системами (первым, грубым каналом К-1). Возрастает и быстродействие двух- и трехканальных следящих ЭП типа "*угол-угол*" соответственно более чем в 7,5 раза и более чем в 350 раз по сравнению с аналогичными одноканальными САУ.

Из сравнения результатов, приведенных в табл. 6,8 и табл. 9, 11, следует, что для соответствующих трехканальных ЭП типа "*угол-угол*" и "*скорость-угол*" такие показатели качества как ширина полос пропускания и быстродействие, определяемое по времени $t_{nc,3}$, практически совпадают для обоих типов систем. Однако между многоканальными позиционными ЭП типа "*угол-угол*" и "*скорость-угол*" есть и существенные отличия.

Сравнительный анализ качества функционирования таких систем, выполненный на основании показателей, приведенных соответственно в табл. 6, 7 и табл. 9, 10, показывает, что в двух- и трехканальных следящих ЭП типа "*скорость-угол*" по сравнению с аналогичными ЭП типа "*угол-угол*" дополнительно может быть обеспечено:

а) уменьшение времени регулирования ПП (в зависимости от типовых настроек каналов): в 2,5-3 раза – для двухканальных ЭП и на 20-25 % – для трехканальных ЭП. При этом для двухканальных ЭП, функционирующих в составе трехканальных систем типа *"скорость-угол"* ПП по положению приобретает апериодический характер вместо монотонного характера при их функционировании в составе трехканальных систем типа *"угол-угол"* (рис. 8,а-10,а и рис. 11,а-13,а);

б) повышение динамической точности воспроизведения задающего воздействия (в зависимости от типовых настроек каналов): на порядок и более – для двух- и трехканальных ЭП с типовыми КУ и разомкнутыми внутренними контурами каналов управления, и более чем на два порядка – для двух- и трехканальных ЭП с типовой подчиненной настройкой каналов управления (см. рис. 8, в,..., е – 10, в,..., е и рис. 11, e, ..., e - 13, e, ..., e).

Вместе с тем, как незначительный негативный факт необходимо отметить, что на уровне двухканальных позиционных ЭП, функционирующих в составе трехканальных систем типа "*скорость-угол*", полоса воспроизводимых частот сужается на 19-22 % (в зависимости от типовой настройки каналов) по сравнению с двухканальными ЭП, функционирующими в составе аналогичных трехканальных систем типа "*угол-угол*".

В целом же при отсутствии существенных труднокомпенсируемых помех и возмущений во втором К-2 и третьем К-3 каналах управления точность итерационных трехканальных следящих ЭП типа "угол-угол" и "скорость-угол" практически может быть ограничена только точностными возможностями передаточных и исполнительных механизмов и устройств, в частности дифференциальных редукторов МД1 и, особенно, МД2, а также разрешающей способностью используемого датчика перемещения рабочего органа.

Выводы.

1. Теоретические и компьютерные исследования показали, что итерационные трехканальные следящие ЭП с типовой настройкой каналов обладают новыми, кардинально улучшенными показателями качества управления по сравнению не только с традиционными одноканальными типовыми следящими ЭП, но и с итерационными двухканальными следящими системами.

2. В трехканальных следящих системах любого из рассмотренных типов значительно больший эффект повышения качества управления достигается при замыкании внутренних ОС и подчиненной настройке контуров управления ЭП автономных каналов. В качестве регуляторов

могут быть использованы как обычные типовые П- и ПИ-регуляторы, так и типовые дифференцирующие или интегрирующие КУ во внешних контурах.

3. Применение ДКУ даёт наилучшие результаты по быстродействию и точности управления в сложных динамических режимах работы следящих ЭП. Применение ИКУ, обеспечивающих наилучшую установившуюся точность, но сужающих полосы пропускания автономных каналов, целесообразно только в статических (стабилизирующих) ЭП или при наличии существенных труднокомпенсируемых помех в автономных следящих каналах управления.

4. Итерационный трехканальный следящий ЭП типа "*скоростьскорость*" при настройке его каналов на технический оптимум обладает астатизмом по управлению третьего порядка ($v_3 = 3$), а при настройке каналов на симметричный оптимум, – шестого порядка ($v_3 = 6$) при сохранении требуемых запасов устойчивости в системе, что потенциально определяет высочайшую динамическую точность таких ЭП.

5. Итерационные трехканальные позиционные ЭП с типовой настройкой имеют существенные преимущества перед обычными типовыми позиционными системами по быстродействию, динамической и установившейся точности, обладая астатизмом третьего порядка и более чем в 200 раз большей (при определенных настройках каналов) полосой пропускаемых частот без ухудшения качества ПП в автономных приводах отдельных каналов. При этом с точки зрения максимального повышения динамической точности управления комбинированные итерационные трехканальные позиционные системы типа "скорость-угол" оказываются даже более предпочтительными, чем классические итерационные трехканальные позиционные системы типа "угол-угол".

6. В целом в итерационных трехканальных следящих ЭП типа "угол-угол" и "скорость-угол" может быть реализована точность управления, удовлетворяющая самым высоким техническим требованиям. При любых типовых настройках каналов достижение максимально возможной точности управления практически ограничивается только точностными возможностями передаточных и исполнительных механизмов и устройств, а также разрешающей способностью используемых датчиков основных координат.

7. Структура итерационных трехканальных следящих ЭП сравнительно проста (даже при учете взаимовлияния каналов по нагрузке), а их расчет и оптимизация не вызывают особых трудностей.

К недостаткам итерационных трехканальных следящих ЭП вращения с типовой настройкой каналов следует отнести необходимость на-

личия в них трёх отдельных приводов требуемой мощности, одного или двух (в зависимости от реализации исполнительного устройства движений системы) высококачественных дифференциальных редукторов, в том числе одного МД – прецизионной точности, и одного высокоточного (доли микрона) датчика положения исполнительного органа. Кроме того, разработка и эксплуатация таких многоканальных ЭП требует высокой культуры производства.

Применение итерационных трехканальных следящих ЭП целесообразно в тех случаях, когда требуется очень высокая динамическая точность воспроизведения задающего воздействия при значительных нагрузках на выходе одноканальной следящей системы (первого, грубого канала К-1) и сравнительно высокой инерционности ее элементов или при наличии существенных труднокомпенсируемых (в том числе с помощью итерационных двухканальных систем) помех в контуре управления.

Список литературы: 1. Осмоловский П.Ф. Итерационные многоканальные системы автоматического управления. – М.: Сов. Радио, 1969. – 256 с. 2. Осмолов-ский П.Ф., Худяев А.А., Руденко В.Е. Синтез и оценка эффективности последовательно-оптимальной двухканальной следящей системы с итерационной структурой // Вестник ХПИ. Сб. науч. трудов. "Техническая кибернетика и ее приложения. – Харьков: ХГУ "Вища школа", 1989. – Вып. 9. – № 263. – С. 17-22. **3.** Проектирование многоканальных систем оптимального управления / Б.И. Кузнецов, Б.В. Новоселов, И.Н. Богаенко, Н.А. Рюмшин. – К.: Техніка, 1993. – 245 с. 4. Многоканальные итерационные системы управления: Учебное пособие / Б.И. Кузнецов, А.А. Худяев, И.Н. Богаенко и др. – К.: НПК "КИА", 1998. – 224 с. 5. Худяев А.А., Гвоздева Е.В. Автоматизированное проектирование итерационных многоканальных систем с эталонной настройкой каналов // Вестник ХГПУ. Сб. науч. трудов. Харьков: ХГПУ, 2000. – №113. – С. 49-56. 6. Худяев А.А., Прокопенко Е.А. Итерационный принцип повышения точности систем автоматического управления при наличии помех // Математичне моделювання. – 2001. – № 2(7). – С. 11-14. 7. Худяев А.А., Литвиненко Д.Г. Итерационные трехканальные следящие системы с подчиненным управлением // Електроінформ. Тем. випуск "Проблеми автоматизованого електропривода. Теорія й практика". – Львів: ЕКОінформ, 2009. – С. 134-137. 8. Худяєв О.А., Василець Т.Ю., Тіщенко О.О. Комплектний електропривод: Навчально-методичний посібник. – Харків: УІПА, 2003. – 40 c.

Поступила в редколлегию 9.12.2010