УДК 621.313:536.2.24:539.2

В.Ф. БОЛЮХ, д.т.н., проф., НТУ "ХПИ" *С.В. ОЛЕКСЕНКО*, аспирант, НТУ "ХПИ"

ВЛИЯНИЕ ЧИСЛА РАДИАЛЬНЫХ РАЗРЕЗОВ ФЕРРОМАГНИТНОГО ЭКРАНА НА ПОКАЗАТЕЛИ ЛИНЕЙНОГО ИНДУКЦИОННО-ДИНАМИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ

Предложена концепция линейного индукционно-динамического преобразователя (ЛИДП), у которого ферромагнитный экран (ФЭ) выполнен с радиальными разрезами. Установлено, что при увеличении количества разрезов уменьшаются индуцированные токи в ФЭ и увеличивается электродинамическая сила, действующая на якорь ЛИДП. Оптимальным является ФЭ с четырьмя радиальными разрезами. КПД ЛИДП с таким ФЭ повышается на 45 % по сравнению с КПД преобразователя с массивным ФЭ. В результате экспериментальных исследований установлено, что наличие четырех радиальных разрезов в ФЭ увеличивает скорость якоря на 47 %.

Ключевые слова: линейный индукционно-динамический преобразователь, ферромагнитный экран, радиальные разрезы, экспериментальные исследования.

преоб-Вступление. Линейные индукционно-динамические разователи (ЛИЛП) широко используются промышленных. в оборонных И научно-технических системах, где необходимы значительные ударные механические нагрузки при относительно незначительных перемещениях исполнительного ударного элемента и ограниченных габаритах [1-3].

ЛИДП применяются в электромагнитных молотах и перфораторах [4, 5], в сейсмоисточниках [6], в испытательных комплексах для проверки ответственных изделий на ударные нагрузки [7], в системах очистки вагонов, трюмов, фильтров и иных емкостей от остатков продуктов и налипших материалов [8], в системах защиты информации на цифровых накопителях [9] и т.п.

Возбуждаемый от емкостного накопителя энергии (ЕНЭ) индуктор ЛИДП индуцирует в массивном электропроводящем якоре ток, который обуславливает возникновение электродинамических усилий, между индуктором и якорем, передаваемых от последнего на ударную пластину, взаимодействующую с исполнительным элементом.

Существует целый ряд подходов, направленных на повышение эффективности ЛИДП. Одним из направлений совершенствования

© В.Ф. Болюх, С.В. Олексенко, 2015

ЛИДП является применение специальных экранов. Как известно, электромагнитный экран уменьшает поля рассеяния, но ухудшает электромеханические показатели ЛИДП [10]. Рассмотрим применение ферромагнитного экрана (ФЭ), который способен уменьшить магнитное поле рассеивания при одновременном повышении силовых показателей и КПД ЛИДП [11, 12]. Такой экран должен быть выполнен в виде диска с наружной цилиндрической обечайкой, охватывая индуктор ЛИДП с торцевой и наружной боковой стороны. Однако указанные эффекты возможны при условии, что ФЭ выполнен из материала, в котором электропроводность мала, вследствие чего в нем не будут индуцироваться вихревые токи. Дело в том, что вихревые токи препятствуют проникновению магнитного поля в массив ФЭ и ухудшают электромеханические показатели ЛИДП.

Для радикального уменьшения электропроводности ФЭ может быть изготовлен из магнитодиэлектрика. Однако изготовление ФЭ из такого материала сопряжено с рядом технических трудностей. Данная проблема может быть решена путем изготовления ФЭ из массивного стального элемента, в котором выполнены радиальные разрезы, препятствующие протеканию указанных токов. Если таких разрезов больше одного, то они должны быть расположены равномерно в тангенциальном направлении. При этом возникает вопрос 0 разрезов, поскольку это сказывается количестве таких на технологичности такого ФЭ.

Целью статьи является исследование влияния радиальных разрезов ферромагнитного экрана на электромеханические показатели ЛИДП.

Математическая модель ЛИДП. Для исследования рабочих используется компьютерная процессов ЛИДП 2Dмодель в COMSOL *Multiphysics* 4.4 программном пакете [13, 14]. Электромагнитные процессы ЛИДП описываются дифференциальным уравнением в цилиндрической системе координат (r, z) при помощи векторного магнитного потенциала $\overline{A} = (\overline{A}_r, \overline{A}_z)$:

$$\boldsymbol{\sigma} \cdot \frac{\partial A}{\partial t} + \frac{1}{\mu_0} \cdot \nabla \times \overline{H} - \boldsymbol{\sigma} \cdot \overline{V} \times \overline{B} = \overline{J}_e , \qquad (1)$$

где σ – электропроводность, адаптивно учитывающая температуру индуктора, якоря или Φ ; μ_0 – магнитная проницаемость вакуума; \overline{V} – скорость перемещения якоря; \overline{J}_e – плотность тока в узле расчетной

сетки; \overline{B} – индукция магнитного поля $\overline{B} = \nabla \times \overline{A}$; \overline{H} – напряженность магнитного поля.

Ток в индукторе i_1 описывается уравнением:

$$\sigma \frac{\partial A}{\partial t} + \frac{1}{\mu_0} \nabla \times \left(\mu_0^{-1} \mu_r^{-1} \overline{B} \right) - \sigma \overline{V} \times \overline{B} = \frac{i_1 N_1}{S_1} , \qquad (2)$$

где μ_r – относительная магнитная проницаемость; N_1 – число витков индуктора; S_1 – площадь сечения витка индуктора.

Значение аксиальной составляющей силы, действующей на якорь ЛИДП, определяется посредством тензора натяжения Максвелла *T*:

$$f_z = 2\pi r \int_{\partial\Omega}^{\overline{n}} T dS , \qquad (3)$$

где \overline{n} – вектор внешней нормали к поверхности интегрирования dS.

Система уравнений (1)-(3) содержит начальные условия:

$$A_{t=0}(A_r, A_z) = A(0,0), \qquad (4)$$

и граничные условия на границе расчетной области:

$$n \times A = 0 . \tag{5}$$

Механические процессы ЛИДП при учете окружающей среды, сил трения и воздействия буферного (возвратного) элемента можно описать уравнением [15]:

$$f_z(t,z) = (m_2 + m_e)\frac{dV}{dt} + K_P \Delta Z(t) + K_T V(t) + 0.125\pi \gamma_a \beta_a D_{ex2}^2 V^2(t), \quad (6)$$

где m_2 , m_e – масса якоря и ИЭ соответственно; K_P – коэффициент упругости буферного элемента; $\Delta Z(t)$ – перемещение якоря с ИЭ; K_T – коэффициент динамического трения; γ_a – плотность среды перемещения; β_a – коэффициент аэродинамического сопротивления среды, в которой происходит перемещение якоря с ИЭ; D_{ex2} – максимальный диаметр якоря; $f_z(t, z)$ – электродинамические или электромагнитные силы, действующие на якорь со стороны индуктора.

Для определения температур активных элементов (индуктор и якорь) и пассивных элементов (ФЭ, ударная пластина) ЛИДП используются уравнения [15]:

$$c_n(T) \cdot \gamma_n \frac{\partial T_n}{\partial t} = \lambda_n(T) \left(\frac{\partial^2 T_n}{\partial r^2} + \frac{1}{r} \frac{\partial T_n}{\partial r} + \frac{\partial^2 T_n}{\partial z^2} \right) + j_n^2(t) \cdot K_v \cdot \rho_n(T) , \quad (7)$$

$$c_m(T) \cdot \gamma_m \frac{\partial T_m}{\partial t} = \lambda_m(T) \left(\frac{\partial^2 T_m}{\partial r^2} + \frac{1}{r} \frac{\partial T_m}{\partial r} + \frac{\partial^2 T_m}{\partial z^2} \right), \quad (8)$$

ISSN 2079-3944. Вісник НТУ "ХПІ". 2015. № 13 (1122)

где n = 1, 2 – индексы, относящиеся к индуктору и якорю соответственно; m = 3, 4 – индексы, относящиеся к ФЭ и ударной пластине соответственно; c(T) – усредненная удельная теплоемкость; γ – усредненная плотность материала; j(t) – плотность тока активного элемента; $\lambda(T)$ – коэффициент теплопроводности; K_{ν} – коэффициент заполнения активного элемента; $\rho(T)$ – удельное сопротивление активного элемента.

Система уравнений (7), (8) дополняется граничными условиями на поверхности ξ . На охлаждаемой поверхности используются граничные условия третьего рода, описывающие процесс теплоотдачи:

$$-\frac{\partial T_{\xi}}{\partial n} = \frac{\alpha}{\lambda} (T_{\xi} - T_0), \qquad (9)$$

где α – коэффициент теплоотдачи; *n* – нормаль к поверхности; *T*₀ – температура окружающей среды.

На границе контакта активных и пассивных элементов используются граничные условия четвертого рода:

$$T_n(r_{\xi}, z_{\xi}, t) = T_m(r_{\xi}, z_{\xi}, t) ; \ \lambda_n \frac{\partial T_{n\xi}}{\partial n} = \lambda_m \frac{\partial T_{m\xi}}{\partial n} .$$
(10)

На оси симметрии ЛИДП используются граничное условие второго рода:

$$\left(\frac{\partial T}{\partial r}\right)_{\xi} = 0.$$
 (11)

Коэффициент теплопроводности индуктора вдоль соответствующих осей определяется по формуле

$$\lambda_{w} = \frac{\lambda_{p}\lambda_{i}\lambda_{k}\left(h_{p}+2h_{i}+h_{k}\right)}{h_{p}\lambda_{i}\lambda_{k}+2h_{i}\lambda_{p}\lambda_{k}+h_{k}\lambda_{p}\lambda_{k}},$$
(12)

где λ_p , λ_i , λ_k – коэффициенты теплопроводности проводника, изоляции и эпоксидного компаунда, соответственно; h_p , h_i , h_k – толщина проводника, изоляции и компаунда в выбранном направлении соответственно.

Решения системы уравнений (1)-(12) производится методом BDF (backward differentiation formula) с фиксированным шагом по времени, неравномерной сеткой и использованием решателя PARDISO.

КПД ЛИДП будем оценивать соотношением [3]

$$\eta = (m_2 + m_e) V^2 C^{-1} U_0^{-2} \,. \tag{13}$$

Конструктивная схема ЛИДП. Рассмотрим ЛИДП коаксиальной конфигурации, у которого ФЭ выполнен в виде диска с наружной обечайкой, со следующими параметрами активных элементов [14].

Индуктор: Наружный диаметр $D_{ex1}=100$ мм, внутренний диаметр $D_{in1}=10$ мм, высота $H_1=10$ мм, число витков $N_1=46$ шт., сечение витка $S_1=8,64$ мм².

Якорь: наружный диаметр $D_{ex2}=100$ мм, внутренний диаметр $D_{in2}=10$ мм, высота $H_2=3$ мм. Якорь выполнен в виде сплошного медного диска.

 Φ Э: наружный диаметр обечайки $D_{ex3}=118$ мм, высота дискового основания $H_{3a}=8$ мм, высота наружной обечайки $H_{3b}=24$ мм.

Индуктор возбуждается от ЕНЭ, имеющего емкость C = 2850 мкФ и напряжение $U_0 = 400$ В. Электронная схема обеспечивает апериодический импульс тока индуктора (индуктор шунтирован обратным диодом). Масса ИЭ $m_e = 0,245$ кг.

Электромеханические И электромагнитные показатели ЛИДП. Электромеханические характеристики ЛИДП, у которого ФЭ изготовлен из магнитодиэлектрика, представлены в работе [13]. Для этого ЛИДП на рис. 1 показано распределение индукции магнитного поля в момент максимума тока индуктора. ЛИДП содержит индуктор 1, якорь 2 и ФЭ 3 (эти обозначения будут использоваться в последующем). Наибольшие значения индукции магнитного поля наблюдаются во внутреннем отверстии индуктора и в области между индуктором якорем. При этом и во всем массиве магнитодиэлектрического ФЭ проходит магнитное поле, а наиболее нагруженной является серединная область дисковой основания.

При выполнении Φ Э из стали с радиальными разрезами происходит изменение как электромеханических характеристик ЛИДП, так и распределения магнитных полей. На рис. 2 представлены электромеханические характеристики ЛИДП, у которого ФЭ выполнен с четырьмя радиальными разрезами. Здесь показаны плотности тока в индукторе j_1 , электропроводящем якоре j_2 и ФЭ j_3 . В якоре и ФЭ токи представлены с измененной полярностью по отношению к току индуктора, а их плотности являются усредненными по сечению этих элементов.

Рис. 1 – Распределение индукции магнитного поля в момент максимума тока индуктора: 1 – индуктор; 2 – якорь; 3 – ФЭ, изготовленный из магнитодиэлектрика

Рис. 2 – Электромеханические характеристики ЛИДП, у которого ФЭ выполнен с четырьмя радиальными разрезами

Токи в индукторе и якоре имеют характер апериодического импульса с максимальными значениями в момент времени t = 0,3 мс. Характер тока в ФЭ существенно отличается. Максимум тока возникает значительно раньше в момент времени t = 0,05 мс. После чего до момента времени t = 0,1 мс ток быстро затухает, но в последующем скорость затухания уменьшается. Этот ток практически полностью затухает до момента времени 0,5 мс, в то время как токи в индукторе и якоре при этом значительны.

На рис. 3 показано распределение индуцированной плотности тока в дисковом основании ΦE , выполненном с четырьмя радиальными разрезами, в момент времени t = 0,3 мс. Наибольшие

значения индуцированного тока наблюдаются в центральной области каждого из четырех сегментов дисковой части ФЭ. Наименьшая плотность тока наблюдается в области вблизи оси ЛИДП. Представленная шкала интенсивности индуцированного тока будет использоваться в последующем.

Рис. 3 – Распределение плотности тока в ФЕ с четырьмя радиальными разрезами при максимуме тока индуктора

В зависимости от количества N радиальных разрезов меняется характер и величина плотности тока, индуцированного в ФЭ (рис. 4). Чем больше радиальных разрезов в ФЭ, тем ниже амплитуда плотности тока. Но длительность этих токов практически неизменна. Первый импульс тока почти полностью затухает к моменту времени t = 0,45 мс, после чего следует повторный импульс с многократно меньшей величиной.

На рис. 5 представлено распределение индуцированных токов в момент максимума тока индуктора в ЛИДП, у которого Φ Э имеет различное количество N радиальных разрезов. Как следует из представленных распределений, максимальные токи индуцируются в массивном Φ Э без радиальных разрезов. Но при этом ток индуцируется лишь в поверхностном слое, не проникая в стальной массив Φ Э. Наибольшие токи индуцируются в дисковом основании Φ Э, а в наружной обечайке токи меньше и проникают на меньшую глубину в стальной массив.

Рис. 4 – Усредненные плотности токов в ФЭ, выполненном с N радиальными разрезами

При увеличении числа радиальных разрезов величина индуцированных токов в ФЭ снижается и ток все больше проникает в стальной массив. Наличие радиальных разрезов несколько уменьшает активную поверхность ФЭ, что негативно для экранирования магнитных полей и усиления поля в зоне якоря. Но при этом уменьшаются индуцированные вихревые токи в ФЭ, которые оказывают размагничивающее действие в указанной активной зоне.

Влияние количества N радиальных разрезов ФЭ на величину и характер электродинамической силы f_z, действующей на якорь ЛИДП, показано на рис. 6 (вариант $N = \infty$ соответствует ФЭ, изготовленному из магнитодиэлектрика). При отсутствии разрезов (N=0) амплитуда электродинамической силы наименьшая. С увеличением количества радиальных разрезов амплитуда и длительность силы f_z возрастают. Однако при этом можно отметить следующую тенденцию. C увеличением количества N разрезов ФЭ увеличение амплитуды электродинамической силы f_{7m}, замедляется. По сравнению с массивным ФЭ (N=0) при 2-х разрезах ФЭ сила f_{zm} возрастает на 12,7 %, при 4-х разрезах - на 17,1 %, при 8-и разрезах - на 19,2 %. При отсутствии разрезов и изготовлении ФЭ из магнитодиэлектрика сила f_m возрастает на 35.9 %.

Рис. 5 – Распределение индуцированных токов в ЛИДП, у которого ФЭ имеет радиальных разрезов *N*: а – 0, б – 2, в – 4, г – 8

На рис. 7 показаны относительные значения КПД ЛИДП, у которых Φ Э имеет N радиальных разрезов (вариант $N = \infty$ соответствует Φ Э, изготовленному из магнитодиэлектрика).

ISSN 2079-3944. Вісник НТУ "ХПІ". 2015. № 13 (1122)

Рис. 6 – Электродинамические усилия, действующие на якорь ЛИДП в зависимости от количества *N* радиальных разрезов ФЭ

Рис. 7 – Сравнительная диаграмма КПЛ ЛИДП в зависимости от количества N радиальных разрезов ФЭ

В качестве базового варианта принят ЛИДП, у которого ФЭ выполнен массивным без разрезов. Анализируя представленные зависимости можно сделать вывод, что оптимальным с точки зрения технологичности и конструктивной сложности при учете КПД является ФЭ с числом разрезов N = 4. В сравнении с базовым вариантом КПД такого ЛИДП повышается на 45 %.

Экспериментальные исследования ЛИДП. Для проверки теоретических результатов была использована экспериментальная установка, представленная на рис. 8 [16].

Рис. 8 – Общий вид экспериментальной установки для исследования ЛИДП

Установка включает индуктор 1 ЛИДП, который состоит из многовитковой обмотки, намотанной из медной шины в два слоя и выполненной монолитной путем пропитки эпоксидной смолой. Дисковый якорь 2 выполнен из технической меди. К якорю прикрепляется ударный диск 3.

Индуктор посредством токовводов 4 соединяется с ЕНЭ. Индуктор коаксиально устанавливается в составной ФЭ 5, выполненный с четырьмя радиальными разрезами (рис. 9).

Экспериментальная установка содержит каркас 6, выполненный из стальной плиты С-образной формы. Между верхней и нижней стенками каркаса 6 подвижно установлен направляющий латунный стержень 7, проходящий через центральные отверстия индуктора и якоря. Индуктор установлен на неметаллическом основании 8 на нижней стенке каркаса, а на верхней стенке каркаса установлен резистивный датчик перемещений 9. К верхней стенке каркаса крепится демпфирующая пружина. Направляющий стержень соединен с ударным диском и подвижным контактом датчика перемещений.

Рис. 9 – Вид ЛИДП, у которого ФЭ выполнен с четырьмя радиальными размерами

На рис. 10 представлена электрическая схема экспериментальной установки.

Рис. 10 – Электрическая схема экспериментальной установки для исследования ЛИДП

Питание экспериментальной установки осуществляется от сети переменного напряжением 220 В регулируется тока И автотрансформатором ЛАТР. После трансформатора напряжение поступает на выпрямитель VA, после чего осуществляется заряд ЕНЭ С – батареи электролитических конденсаторов. При достижении необходимого зарядного напряжения U_0 ЕНЭ отключается от сети ключом О. При подаче сигнала с пускового устройства ПУ тиристор VT открывается, ЕНЭ разряжается на индуктор с активным сопротивлением R_1 и индуктивностью L_1 . При этом генерируется импульсное магнитное поле, которое в начале переходного процесса индуцирует ток противоположного направления в якоре. Между якорем и индуктором возникают электродинамические усилия, обеспечивающие перемещение ударным диском якоря с И направляющим стержнем в вертикальном направлении. При помощи

электронного осциллографа N снимаются показания резистивного датчика перемещений, а при помощи измерительного шунта $R_{\rm m}$ типа 75ШСММЗ-200-0,5 на осциллографе измеряется токовый импульс в индукторе.

Для формирования апериодического полярного импульса тока индуктор шунтирован обратным диодом *VD*.

Каждая из четырех разрезанных частей ФЭ состоит из наружной обечайки, формируемой тремя элементами, которые обозначены буквами **a**, **б**, **в** (рис. 11). Дисковое основание каждой разрезанной части ФЭ формируется тремя одинаковыми элементами **г**. Все элементы фиксируются между собой при помощи крепежных элементов **д**.

Рис. 11 – Элементы четверти составного ФЭ

При помощи электронного осциллографа одновременно измерялся ток в индукторе i_1 и перемещение якоря с ударным диском ΔZ (рис. 12).

Рис. 12 – Осциллограмма импульса тока индуктора и показаний датчика перемещений якоря

ISSN 2079-3944. Вісник НТУ ''ХПІ''. 2015. № 13 (1122)

В результате экспериментальных исследований было установлено, что $\Phi \ni$ с четырьмя радиальными разрезами увеличивает скорость якоря *V* на 47 % по сравнению с вариантом массивного неразрезанного $\Phi \ni$.

Получено удовлетворительное согласование между измеренными и расчетными электромагнитными (до 10 %) и механическими (до 5 %) показателями ЛИДП, что свидетельствует о достоверности расчетной модели.

Выводы. Предложена концепция ЛИДП, у которого ФЭ выполнен с радиальными разрезами, упорядочено расположенными в тангенциальном направлении.

Установлено, что при увеличении количества разрезов уменьшаются индуцированные токи в ФЭ и увеличивается электродинамическая сила, действующая на якорь ЛИДП.

Оптимальным с точки зрения технологичности, конструктивной сложности и эффективности является ФЭ с четырьмя радиальными разрезами. КПД ЛИДП с таким ФЭ повышается на 45 % по сравнению с КПД преобразователя с массивным ФЭ без разрезов.

В результате экспериментальных исследований установлено, что наличие четырех радиальных разрезов в ФЭ увеличивает скорость якоря на 47 %.

Получено удовлетворительное согласование между измеренными и расчетными электромагнитными (до 10 %) и механическими (до 5 %) показателями ЛИДП.

Список литературы: 1. Болюх В.Ф., Коритченко К.В. Основні напрямки розвитку електромеханічних імпульсних прискорювачів // Електротехніка і електромеханіка. -2009. – № 4. – С. 7-13. 2. Здор Г.Н., Мамутов А.В., Мамутов В.С., Смотраков Д.В. Разработка эффективных технологических устройств для магнитно-эластоимпульсной вырубки-пробивки тонколистовых материалов // Металлообработка. – 2001. – № 2. – С. 28-32. 3. Болюх В.Ф., Щукин И.С. Линейные индукционно-динамические преобразователи. - Saarbrucken, Germany: LAP Lambert Academic Publishing - 2014. -496 с. (https://www.lap-publishing.com). 4. Угаров Г.Г., Нейман В.Ю. Тенденций развития и применения ручных ударных машин с электромеханическим преобразованием энергии // Известия вузов. Электромеханика. - 2002. - № 2. - С. 37-43. 5. Нейман В.Ю. Анализ энергопреобразования процессов линейных электромагнитных машин с предварительным аккумулированием магнитной энергии в динамических режимах // Электротехника. – 2003. – № 2. – С. 30-36. 6. Гурин А.Г., Набока Б.Г., Гладченко В.Я. Волновые явления в электродинамических излучателях и формирование сложных гидроакустических сигналов // Технічна електродинаміка. – 2001. – № 2. – С. 3-6. 7. Татмышевский К.В., Козлов С.А. Магнитно-импульсные установки для испытаний изделий авиакосмической техники на ударные воздействия // Авиакосмическое приборостроение. – 2005. – № 12. – С. 52-57. 8. Тютькин В.А. Магнитно-импульсный способ разрушения сводов и очистки технологического оборудования от налипших материалов // Электротехника. – 2002. – № 11. – С. 24-28. 9. Болюх В.Ф., Марков А.М.,

Лучук В.Ф., Щукин И.С. Устройство защиты компьютерной информации от несанкционированного доступа на основе индукционно-динамического двигателя // Електротехніка і електромеханіка. - 2008. - № 2. - С. 5-10. 10. Bolyukh V.F., Rassokha M.A. Influence of external electromagnetic screen on efficiency of impact electromechanical converter of disk configuration // Russian electrical engineering. - 2010. - Vol. 81. - № 10. -Р. 542-549. 11. Болюх В.Ф. Пути совершенствования линейных электромеханических преобразователей импульсного действия // Електротехніка і електромеханіка. – 2006. – № 5. – C. 14-21. 12. Болюх В.Ф., Шукин И.С. Схемно-конструктивные совершенствования ударных электромеханических преобразователей индукционного типа // Електротехніка і електромеханіка. – 2010. – № 5. – С. 5-11. 13. Болюх В.Ф., Олексенко С.В., Шукин И.С. Влияние параметров ферромагнитного сердечника на эффективность индукционно-динамического лвигателя // Електротехніка i електромеханіка. - 2012. - №6. - С.20-27. 14. Bolyukh V.F., Oleksenko S.V., Katkov I.I. The use of fast cryogenic cooling and ferromagnetic core greatly increases efficiency of a linear induction-dynamic converter // Refrigeration Science and Technology. - 13th International Institute of Refrigeration Conference on Cryogenics. - Prague, Czech Republic. - April 7-11, 2014. - Code 106226. - 2014. - P. 268-275. 15. Bolyukh V.F., Shchukin I.S. The thermal state of an electromechanical induction converter with impact action in the cyclic operation mode // Russian electrical engineering. - 2012. - Vol. 83, № 10. - P. 571-576. 16. Болюх В.Ф., Олексенко С.В., Щукин И.С. Экспериментальные исследования влияния параметров ферромагнитного сердечника на электромеханические показатели линейного индукционно-динамического преобразователя // Електротехніка і електромеханіка. -2014. – № 5. – C.13-18.

Bibliography (transliterated): 1. Bolyukh V.F., Korytchenko K.V. "The main directions of electromechanical pulse accelerator". Electrical engineering & electromechanics. 4 (2009): 7-13. Print. 2. Zdor G.N., Mamut A.V., Mamut V.S., Smotrakov D.V. "Development of effective technological devices for magnetic elastoimpulsnoy cutting-punching thin materials". Metal Processing. 2 (2001): 28-32. Print. 3. Bolyukh V.F., Shchukin I.S. Linear induction-dynamic converters. Saarbrucken, Germany: LAP Lambert Academic Publishing, 2014. Web. <https://www.lap-publishing.com>. 4. Ugarov G.G., Neiman V.Y. "Trends in the development and use of hand-held drum machines with electromechanical energy conversion". Proceedings of the universities. Electromechanics. 2 (2002): 37-43. Print. 5. Neiman V.Y. "Analysis of the processes of energy conversion of linear electromagnetic machines with preliminary accumulation of magnetic energy in dynamic modes". Electrical Engineering. 2 (2003). 30-36. Print. 6. Gurin A.G., Naboka B.G., Gladchenko V.J. "Wave phenomena in electromagnetic emitters and the formation of complex acoustic signals". Tehnichna Elektrodinamika. 2 (2001): 3-6. Print. 7. Tatmyshevsky K.V., Kozlov S.A. "Magnetic pulse installation for testing products for aerospace shock effects". Aerospace Instrument. 12 (2005): 52-57. Print. 8. Tyutkin V.A. "Magnetic pulse method for breaking arches and cleaning of process equipment from adhering materials". Electrical Engineering. 11 (2002): 24-28. Print. 9. Bolyukh V.F., Markov A.M., Luchuk V. F., Shchukin I.S. "Device protecting computer information against unauthorized access on the basis of induction-dynamic motor". Electrical engineering & electromechanics. 2 (2008): 5-10. Print. 10. Bolyukh V. F., Rassokha M. A. "Influence of external electromagnetic screen on efficiency of impact electromechanical converter of disk configuration". Russian electrical engineering. Vol. 81. No. 10 (2010): 542-549. Print. 11. Bolyukh V.F. "Ways of improving the linear electromechanical converters impulse action". Electrical engineering & electromechanics. 5 (2006): 14-21. Print. 12. Bolyukh V.F., Shchukin I.S. "Circuit-design improvement shock induction type electromechanical converters". Electrical engineering & electromechanics. 5 (2010): 5-11. Print. 13. Bolyukh V.F., Oleksenko

S.V., Shchukin I.S. "Influence of parameters on the efficiency of the ferromagnetic core of the induction-dynamic motor". *Electrical engineering & electromechanics*. 6 (2012): 20-27. Print.
14. Bolyukh V.F., Oleksenko S.V., Katkov I.I. "The use of fast cryogenic cooling and ferromagnetic core greatly increases efficiency of a linear induction-dynamic converter". *Refrigeration Science and Technology. 13th International Institute of Refrigeration Conference on Cryogenics*. Prague, Czech Republic. April 7-11, 2014. Code 106226. 2014. 268-275. Print.
15. Bolyukh V.F., Shchukin I.S. "The thermal state of an electromechanical induction converter with impact action in the cyclic operation mode". *Russian electrical engineering*. Vol. 83, № 10 (2012): 571-576. Print.
16. Bolyukh V.F., Oleksenko S.V., Shchukin I.S. "Experimental studies of the influence of parameters on the ferromagnetic core parameters electromechanical linear induction-dynamic converter". *Electrical engineering & electromechanics*. 5 (2014): 13-18. Print.

Поступила (received) 15.02.2015

Болюх Владимир Федорович, профессор, доктор технических наук. Защитил диплом инженера по специальности "Криогенная техника" в 1979 г., диссертации кандидата и доктора технических наук в Харьковском политехническом институте по специальности электрические машины и аппараты, соответственно в 1987 и 2003 гг. Профессор кафедры "Общая электротехника" Национального технического университета "Харьковский политехнический институт "с 2004 г. Научные интересы связаны с проблемами линейных электромеханических преобразователей импульсного действия, криогенных и сверхпроводящих электромеханически устройств.

Олексенко Сергей Владимирович. Защитил диплом магистра в Национальном техническом университете "Харьковский политехнический институт" в 2011 г. Аспирант кафедры общей электротехники НТУ "ХПИ". Научные интересы связаны с проблемами линейных электромеханических преобразователей импульсного действия.