
 47 48

References: 1. W. B. Arthur. Increasing Returns and Path Dependence in the Economy. University
of Michigan Press, 1994. 2. A. L. Barabási, E. Bonabeau. Scale-free networks. Scientific American
288, pp.60-69, 2003. 3. S. Bikhchandani, D. Hirshleifer, I. Welch. Learning from the Behavior of
Others: Conformity, Fads, and Information Cascades. American Economic Association in Journal
of Economic Perspectives, pp.151-170, 1998. 4. E. Bonabeau. The Perils of the Imitation Age.
Harvard Business Review Article, Jun 1, pp.45-47, 49-54, 2004. 5. D. Boyd, N. B. Ellison. Social
Network Sites: Definition, History, and Scholarship. Journal of Computer-Mediated Communica-
tion, Vol. 13, No. 1-2, 2007. 6. J. Breslin, S. Decker. The Future of Social Networks on the Internet
– The Need for Semantics. Digital Enterprise Research Institute, Galway, IEEE Internet Computing
pp.87-90, 2007. 7. F. J. Carter Jr., T. Jambulingam, V. K. Gupta, N. Melone. Technological innova-
tions: A framework for communicating diffusion effects. Information & Management, 38(5),
pp.277-287, 2001. 8. B. Celen, S. Kariv. Observational learning under imperfect information.
Games and Economic Behavior 47(1), pp.72-86, 2004. 9. A. Colman. A Dictionary of Psychology.
Originally published by Oxford University Press, 2001. 10. P. S. Dodds, R. Muhamad, D. J. Watts.
An Experimental Study of Search in Global Social Networks. Science, 8 August 2003, Vol. 301. no.
5634, pp.827-829, 2003. 11. L. Downes, C. Mui. Unleashing the killer app: digital strategies for
market dominance. Harvard Business School Press, 1998. 12. P. F. Drucker. The New Realities.
Transaction Publishers, Rev. Ed., 2003. 13. J. Fenn, A. Linden. Gartner’s Hype Cycle Special
Report for 2005. 10th anniversary of Gartner’s Hype Cycles, ID Number: G00130115,
www.gartner.com/resources/130100/130115/gartners_ ype_c.pdf, 2005. 14. Gartner. Understand
Hype Cycle. Gartner Group, www.gartner.com/pages/story.php.id.8795.s.8.jsp, 2007. 15. M. Glad-
well. The Tipping Point: How Little Things Can Make a Big Difference. Little Brown, 2001. 16. M.
Granovetter. Threshold Models of Collective Behavior. The American Journal of Sociology, Vol.
83, No. 6, pp.1420-1443, 1978. 17. D. Gruhl, R. Guha, D. Liben-Nowell, A. Tomkins. Information
Diffusion Through Blogspace. In proceedings of the 13th International World Wide Web Confer-
ence (WWW’04), pp.491-501, 2004. 18. K.H. Lee. Viral Architectures. MIT Media Lab, Viral
Working Group, web.media.mit.edu/~kwan/ Projects/viralarchitectures.pdf, 2005. 19. E. Lesser,
M. A. Fontaine, J. A. Slusher. Knowledge and Communities. Elsevier LTD, Oxford, 2000. 20. C. P.
Kindleberger. Manias, Panics, and Crashes: A History of Financial Crises. Basic Books, New York,
1978. 21. C. MacKay. Extraordinary Popular Delusions and the Madness of Crowds. With a fore-
word by Andrew Tobias, Harmony Books, New York, 1980. 22. D. Kempe, J. Kleinberg, E. Tardos.
Maximizing the Spread of Influence through a Social Network. SIGKDD ’03, Washington, Pro-
ceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data
mining, pp.137-146, 2003. 23. S. Moscovici, E. Lage, M. Naffrenchoux. Influences of a consistent
minority on the responses of a majority in a colour perception task. Sociometry, Vol. 32, pp.365-80,
1969. 24. T. O’Reilly. What Is Web 2.0 – Design Patterns and Business Models for the Next Gen-
eration of Software. Oreillynet.com, www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-
is-web-20.html, 2005. 25. T. Postmes, S. Brunsting. Collective action in the age of the Internet:
mass communication and online mobilization. Social Science Computer Review, Volume 20, Issue
3, Special issue: Psychology and the Internet, pp.290-301, 2002. 26. E. Rogers. Diffusion of Inno-
vations. Fifth Edition. Free Press, New York, 2003. 27. M. Rolfe. Social networks and threshold
models of collective behavior. University of Chicago, Workingpaper, December 10, 2004. 28.
C.Russ. Online Crowds – Extraordinary mass behavior on the Internet. Proceedings of i-Media ’07,
Graz, Austria, pp.65-76, 2007. 29. T. C. Schelling. Micromotives and Macrobehavior. Norton,
W. W. & Company, Inc, 1978. 30. R. J. Shiller. Irrational Exuberance. University Presses of CA,
2nd ed., 2005. 31. D. J. Watts. The “New” Science of Networks. Annual Review of Sociology Vol.
30, pp.243-270, 2004.

Поступила в редколлегию 15.02.08

UDC 681.3.06

V.A. SHEKHOVTSOV, NTU “KhPI”, Kharkiv, Ukraine,
Ch. KOP, Alpine-Adriatic University of Klagenfurt, Austria
H.C. MAYR, Alpine-Adriatic University of Klagenfurt, Austria

TOWARDS QUALITY-AWARE PREDESIGN MODEL

У статті розглядаються основи пілходу до збирання семантики вимог якості у проміжну
предпроектну модель. Цей підхід є поєднанням технологій Клагенфуртського концептуаль-
ного предпроектування та аспектного предпроектування. Запропоновані додатки дозволяють
включити до моделі іерархію характеристик якості та подати наскрізні відношини між інте-
ресами якості та основною функціональністю системи. Обговорені деякі напрямки інтеграції
запропонованої моделі у процесс розробки програмного забезпечення, що керується якістю.

An approach to capturing the semantics of quality requirements into an intermediate predesign
model is outlined. This approach combines Klagenfurt Conceptual Predesign and Aspectual Predes-
ign techniques. Proposed extensions incorporate the hierarchy of quality characteristics into the
predesign model and represent crosscutting relationships between the quality concerns and the main
functionality of the system. Some directions of integration of the proposed model into quality-
driven software process are discussed.

1. Introduction. One of the problems arising while developing an approach to
incorporate quality-related issues into software process is a problem of finding
an adequate representation of the semantics of quality requirements before per-
forming design-time activities.

Following Klagenfurt Conceptual Predesign [12-13, 15] and Aspectual
Predesign [19-20] approaches, to solve the above problem we propose to estab-
lish an intermediate semantic model (predesign model) residing between quality
requirements elicitation and conceptual design. Such model has to describe the
notion of the software quality that can be used on different stages of the soft-
ware process, and capture the quality requirements semantics in a way that can
be easily understood and verified by the system users. We call this model Qual-
ity-Aware Predesign Model (QAPM). In this paper we outline the main con-
cepts of this model, more detailed description will be included in the follow-up
papers.

The rest of the paper is organized as follows. Section 2 gives some impor-
tant background information about software quality and existing predesign
approaches. Section 3 describes the main features of the proposed predesign
model. Section 4 is devoted to the integration of the described technique into
broader context of quality-driven software process. Section 5 concludes the
paper and shows the directions for future research.

 49 50

2. Background. In this section, some necessary background information will
be introduced.

2.1. Quality Models and Quality Requirements. To be able to describe the
approach for analysis of quality-related information, it is necessary to select the
notion of the software quality first. In this paper, we limit ourselves to the tax-
onomy approach to representing the product quality [7]. In this approach, qual-
ity is conceptualized as a hierarchy of quality attributes, with top-level attributes
representing general quality characteristics (like functionality and reliability),
whereas bottom-level attributes (quality sub-characteristics) representing more
concrete characteristics (e.g. reliability can be decomposed into fault tolerance
and availability). This representation forms the foundation for the quality model
[2, 5-6]. There are many quality models proposed in literature (starting from
[1]) and standardized by respective bodies such as ISO [9].

Following [8, 21], we assume that quality sub-characteristics are quanti-
fied via quality measures (indicators). For example, according to [21], “time
behavior” sub-characteristic can be quantified via turnaround time, response
time, CPU elapsed time, I/O processing time and several other indicators.

Indicators form the foundations for quality criteria and quality require-
ments. Every criterion reflects “a single aspect of quality of the system” [9].
According to [5-6] criteria can be seen as quality indicators connected to the
particular system artifacts or its operations, e.g. for “response time” quality
indicator the criteria can be “response time for searching the customer by
name”, “response time for bank account withdrawal” etc. Quality criteria to-
gether with threshold values form the quality requirements. For example, the
requirement based on described criteria could look like this: “response time of
searching the customer by name must not exceed 1 second”.

Glinz [8] proposed classification of quality requirements introducing the
concerns (matters of interest in a system) [4], in particular (a) functional con-
cerns related to expected system functionality and (b) quality concerns related
to quality characteristics defined by some quality model. After that, the set of
requirements was decomposed into three main categories: (1) functional re-
quirements related to functional concerns; (2) quality requirements related to
quality concerns; (3) constraints constraining the solution space beyond what is
necessary to meet the particular functional or quality requirement. We plan to
base our model on this classification.

2.2. Handling Quality Requirements in Predesign Approaches. In this sec-
tion, we will outline the approaches to handling the quality requirements in
existing predesign approaches.

Klagenfurt Conceptual Predesign Model (KCPM) [12-13, 15] consists of a
small set of semantic concepts such as thing-type (generalization of class and
value type), connection-type (representing relationships between thing-types),
or operation-type (modeling functional services). In this paper, we restrict our-
selves to its tabular representation using glossaries. Though this model is built
to capture the semantics of all kinds of requirements, non-functional require-
ments treatment is limited by collecting them in the constraint glossary. Each
constraint (e.g. The System shall process a minimum of 8 transactions per sec-
ond) could be related to at least one constraint type. In [12] a constraint type
was a classification of the non-functional requirement (e.g. performance re-
quirement). Since different kinds of classifications exist the constraint type was
connected to one constraint category (e.g. “IEEE Std. 830-1993”). This way of
connecting constraint categories and constraint types to constraint gave the
designer more flexibility. He/she was allowed to define any kind of category
(“IEEE Std. 830-1993”, “My Characteristics” etc). Within this category it was
possible to collect the types of requirements which belong to it. Once the types
were defined the designer was able to relate the collected constraints to one or
more constraint types related to different categories.

The main goal of an Aspectual Predesign technique [19-20] was extending
the KCPM to make it able to deal with crosscutting concerns in the problem
space. It aimed at capturing the semantics of “aspectual” (crosscutting) re-
quirements as defined by aspect-oriented software development (AOSD) termi-
nology [4] into the predesign model (Aspectual Predesign Model, APM) similar
in its purpose to KCPM. In this model, thing-types are used to represent con-
cerns in AOSD sense, crosscutting behavior units implementing quality re-
quirements (advices, interceptors) are represented via operation-types; pointcuts
(rules that connect advices to some places in model where they are supposed to
be called) are represented via modified connection-types. Aspectual predesign
can be seen both as an extension to the Klagenfurt conceptual predesign that
allows mapping the aspectual requirements and as an intermediate step of the
AOSD residing between aspect-oriented requirements engineering and aspect-
oriented modeling.

The two predesign approaches are complementary. Whereas KCPM repre-
sents quality requirements as constraints and allows user-supplied classification
of these requirements, APM allows treating the requirements as belonging to
crosscutting concerns and offers some guidance in separation of these concerns.
It seems feasible to merge these approaches in a way that makes the resulting
technique benefit from their advantages. The outline of the possible results of
this merge is presented in the following section.

 51 52

3. Outline of the Model. Several problems need to be solved during the model
development: (1) allowing integration of the quality model; (2) extending the
KCPM metamodel to integrate complete representation of quality requirements;
(3) implementing the semantic support for separation of quality-related and
functional concerns; (4) implementing support for relationships between these
concerns. In this section, we describe our approach to resolving these problems.

3.1. Integrating Quality Models into QAPM. For allowing a flexible integra-
tion of the quality–related information, we introduce two new semantic con-
cepts for our predesign model: a quality characteristic and a quality model. We
cannot use existing concepts (such as thing types) for this purpose because they
represent types of things whereas quality characteristics are instances of the
particular high-level concept. A quality characteristic is a semantic concept for
elements from all levels of a quality model hierarchy; quality model represents
the particular instance of this hierarchy. For quality indicators, their units of
measurement are values for “value domain” meta-attribute of the quality char-
acteristic.

Fig.1 contains the fragment of a quality model glossary corresponding to
the extended ISO 9126 quality model (in particular, the “Efficiency” high-level
quality characteristic).

id# Name belongs to value domain

Q04 Efficiency
Q04-1 Time behavior Q04, Efficiency

Q04-1-1 Response time Q04-1, Time behavior seconds

Figure 1: Part of the quality model glossary corresponding to efficiency

The reason of storing all the quality model information in the glossary re-
flects the “mixed model” paradigm of the quality model construction [5] mak-
ing possible to tailor already existing quality models for the particular problems.
In our model, analysts can add or modify quality characteristics and indicators
of different nature.

3.2. Modeling Crosscutting Concerns and Requirements. In this section, we
show how our model allows capturing crosscutting concerns and requirements.

In our model, quality characteristics and sub-characteristics are treated
(following [8, 16]) as concerns. We also follow [16] in distinguishing the domi-
nant functional concern which controls the decomposition of the system and
modeling all other concerns (in particular, all quality concerns) as crosscutting
concerns. As the quality concerns form the primary interest of this paper, we

assume that the dominant concern is the main functionality of the system. This
concern defines the decomposition of the predesign model into the set of thing-
types and other KCPM artifacts.

In this paper, we also assume that quality concerns directly correspond to
the quality characteristics and sub-characteristics in the accepted quality model
(e.g. for ISO 9126 quality model the candidate concerns are “Efficiency”, “Us-
ability”, “Time behavior” etc.) As a result, we do not need any special notation
to represent these concerns; the quality model glossary will serve the purpose of
quality concern glossary as well. If some quality characteristics are of no inter-
est to the current system, they can be simply ignored in the rest of the model.

To be able to represent crosscutting relationships between functional and
quality concerns, we need to decide on a join point model [6] based on captured
requirements semantics. This model defines the set of all possible places where
the functionality of the base concern can be extended or replaced with the func-
tionality implementing the crosscutting concern, and, on the other hand, the set
of all possible model artifacts belonging to the crosscutting concern that can be
chosen for this extension. The join points in this model are thing-type, connec-
tion-type, operation-type and cooperation-type.

After the join point model is defined, the next step is to establish the se-
mantics of quality requirements. We propose a constraint to be a semantic con-
cept corresponding to the quality requirement. To reflect the relationship be-
tween base and quality concerns every such constraint will contain the refer-
ences to particular quality concern (quality characteristic) and the element of
dominant functional concern belonging to the joint point model (KCPM arti-
fact). The QAPM metamodel of quality requirement is shown on Fig.2.

Figure 2: Part of QAPM metamodel describing the quality requirement as a constraint

The ModelingElement is the root of the schema elements hierarchy in the
KCPM metamodel. We decided to associate the QualityCharacteristic to this
abstract meta-class and enhance this association using the Constraint associa-

name
value_type

QualityCharacteristic

* *
name
description

ModelingElement

sequencing
description
applicability
decisionOperator
threshold

Constraint

 53 54

tive meta-class. The meta-attributes characterizing the quality requirement con-
straint are as follows:
1. “sequencing” reflects the temporal and conditional dependencies between

base and quality concern elements [3]. The set of possible values reflecting
these dependencies includes “before”, “after”, “wrap”, “instead”, “concur-
rently”, “if”, and “if not”.

2. “applicability” represents applicability condition for this requirement (e.g.
“during peak hours”, “during startup and shutdown”, “if the system is in
the safe mode” etc.)

3. “description” contains the description of the requirement. For imprecise
requirements, this meta-attribute is supposed to contain all the information
available for the requirement, e.g. “the system must be secure”. For re-
fined requirements, the following two meta-attributes will be used as well.

4. “decisionOperator” contains the operator which needs to be applied to the
threshold value to determine if the requirement is satisfied or not (e.g.
“equals”, “less” or more complicated operators)

5. “threshold” contains the threshold value.
Fig.3 shows the fragment of a constraint glossary representing quality re-

quirement. We suppose thing-type Order and cooperation-type Order depart-
ment checks articles are already defined in a model.

id# quality

charac-
teristic

functional
element

sequen-
cing

description appli-
cabil-

ity

decision
operator

thresh-
old

C02 Q04-1-1,
Response

time

E01, Order
department
checks articles

wrap the response
time must be

short

during
peak

hours

less 0.5

Figure 3: Quality requirements in the QAPM constraint glossary

4. Model Integration. The QAPM is supposed to be integrated into wider con-
text of Quality-Driven Software Process – specialized software process aimed
at integrating quality into all the stages of the software development from re-
quirements elicitation to code generation. In this section, we take a detailed look
at various aspects of this integration.

4.1. QAPM Information Suppliers. Our model obtains its input information
from the requirements elicitation stage of the software process. In the frame-
work of the quality-driven software process, we plan to support this stage
(Quality Requirements Elicitation) with some special techniques.

For example, when natural language requirements specifications are avail-
able and the stakeholders trust them, it is possible to elicit quality requirements
from these specifications using NLP algorithms and transfer their semantics into
QAPM glossaries ([14] represents a preliminary technique aimed at this goal).

Another technique is supposed to be used if the formal requirements speci-
fications are difficult to obtain or cannot be completely trusted. The proposed
approach collects the stakeholders experience allowing them to assess the quali-
ties of the system under development interactively in context of its usage proc-
esses. To achieve this, it is planned to construct a special tool [18] implement-
ing an interactive simulation environment. In this environment, stakeholders
can experience the qualities of the system under development in context of the
usage processes carried out in their organizations and make assessments of
these qualities. These assessments will serve as sources of the quality require-
ments. The semantics of the requirements elicited via this environment can also
be transferred into QAPM glossaries.

4.2. QAPM Information Consumers. Information represented in QAPM glos-
saries is planned to serve as a source for two other steps of the Quality-Driven
Software Process: Quality-Driven Architecture Design and Quality-Driven
Code Generation.

For the architecture design step of the software process it is planned to im-
plement a tool for creating architecture of the system under development that
entails that system to have the required qualities. This problem is broken down
into the set of problems related to selecting a software architecture artifact
which possesses the desired qualities (artifact selection) while reaching an
agreement between the desired system quality and the resource constraints (arti-
fact negotiation). Paper [10] describes a technique supporting the quality-based
selection of specific development artifacts (BPM methodologies). For quality-
driven software process, it will be generalized to cover all the software artifacts.
We plan to obtain the information about the desired qualities controlling the
artifact selection and negotiation from QAPM quality model.

For the code generation step it is planned to implement a tool for creating
the code of the system under development in a way that complies with the ar-
chitecture worked out earlier. To achieve this goal, it is planned to utilize the
power of modern code-generation techniques (such as OO-Method [17]) by
finding the way to adapt quality-related information so it can influence some
aspects of the code generation. To be able to perform actual quality-driven code
generation, it is planned to integrate the concepts related to quality into OO-
Method (its notation, methodology, and abstract execution model). For initial

 55 56

representation of quality-related information, we plan to use QAPM enhancing
the approach from [11], which suggests using original KCPM for this purpose.

5. Conclusions and Future Work. In this paper, we outlined the basic con-
cepts of a quality-aware intermediate model allowing capturing quality re-
quirements semantics into glossary entries that can be verified by the end users.
This model can serve as a source for information necessary on other stages of
the quality-driven software process. In fact, we plan to use this model as core
“scratch pad” of the problem domain for this process. In future, we plan to
implement a software tool supporting this model, as well as perform all the
described actions necessary to integrate QAPM into the software process.

References. 1. Boehm, B.W., Brown, J.R., et al. Characteristics of Software Quality // Vol.1 of
TRW Series of Software Technology. North-Holland, 1978. 2. Carvallo, J., Franch, X., Grau, G.,
Quer, C. Reaching an Agreement on COTS Quality through the Use of Quality Models // Proc.
ICSE 2nd Workshop on Software Quality, 2004. 3. Chitchyan, R., Rashid, A., et al, Semantics-
based Composition for Aspect-Oriented Requirements Engineering // Proc. AOSD’07, ACM, 2007.
4. Filman, R., Elrad, T., Clarke, S., Aksit, M. Aspect-Oriented Software Development. Addison-
Wesley, 2006. 5. Firesmith, D. Quality Requirements Checklist // J. of Object Technology, 4:9,
2005, p.31-38. 6. Firesmith, D. Using Quality Models to Engineer Quality Requirements // J. of
Object Technology, 2:5, 2003, p.67-75. 7. Garvin, D.A. Competing on the Eight Dimensions of
Quality // Harvard Business Review, 65:6, 1987, p.101-109. 8. Glinz, M. On Non-Functional Re-
quirements // Proc. RE’07, IEEE, 2007. 9. ISO/IEC 9126-1, Software Engineering – Product Qual-
ity – Part 1: Quality model, 2001. 10. Kaschek, R., Pavlov, R., Shekhovtsov, V., Zlatkin, S. Charac-
terization and tool supported selection of business process modeling methodologies // Technologies
for Business Information Systems. Springer, 2007, p.25-37. 11. Kop, C, Mayr, H. C., Yevdoshenko,
N.: Requirements Modeling and MDA. Proposal for a Combined Approach // Proc ISD 2006,
Springer, 2007 12. Kop, Ch. Rechnergestützte Katalogisierung von Anforderungspezifikationen und
deren Transformation in ein konzeptuelles Modell. Doctoral thesis, University Klagenfurt, 2002.
13. Kop, Ch., Mayr, H.C. Mapping Functional Requirements: From Natural Language to Con-
ceptual Schemata // Proc. SEA'02, 2002, p.82-87. 14. Kostanyan, A., Shekhovtsov, V. Towards
Entropy-Based Requirements Elicitation // Proc. ISTA'2007, LNI P-107, GI-Edition, 2007, p.105-
116. 15. Mayr, H.C.; Kop, Ch.: A User Centered Approach to Requirements Modeling // Proc.
Modellierung 2002. LNI P-12, GI-Edition, 2002, p.75-86. 16. Meier, S., Reinhard, T., Seybold, C.,
Glinz, M. Aspect-Oriented Modeling with Integrated Object Models // Proc. Modellierung 2006,
GI-Edition, 2006, p.129-144. 17. Pastor, O., Gómez, J., Insfrán, E., Pelechano, V.: The OO-Method
approach for information systems modeling: from object-oriented conceptual modeling to auto-
mated programming // Information Systems, 24:7, 2001, p.507-534. 18. Shekhovtsov, V., Kaschek,
R., Zlatkin, S. Constructing POSE: a Tool for Eliciting Quality Requirements // Proc. ISTA'2007,
LNI P-107, GI-Edition, 2007, p.187-199. 19. Shekhovtsov, V., Kostanyan, A. Aspectual Predesign
// Proc. ISTA'2005, LNI P-63, GI-Edition, 2005, p.216-226. 20. Shekhovtsov, V., Kostanyan, A.,
Gritskov, E., Litvinenko, Y. Tool Supported Aspectual Predesign // Proc. ISTA'2006, LNI P-84, GI-
Edition, 2006, p.153-164. 21. van Zeist, B., Hendriks, P., Paulussen R., Trienekens, J. Quality of
Software Products. Experiences with a quality model. Kluwer , 1996.

Поступила в редколлегию 20.02.08

UDC 512.086

M.TALIB, Ph.D., Department of Computer Science,
University of Botswana,
A.ABUSUKHON, M.Sc., School of Computing and Technology,
University of Sunderland

GRAPHICS TECHNOLOGY TO MODEL THE PROBLEMS OF
CALCULUS USING ANALYTICAL GEOMETRY

Ця стаття містить опис деяких методів візуалізації, що дають можливість використовувати
технології комп‘ютерної графіки для моделювання задач математичного аналізу та аналітич-
ної геометрії. Детально розглядаються питання використання комп‘ютерних зображень та
робиться огляд використання комп‘ютерної анімації для цієї візуалізації.

The paper contains some general background and some of the visualization methods that have been
used to bring computer graphics technology to model mathematical problems of Calculus with
Analytical Geometry. Computer-generated images have been length and breath of the paper as a
source of additional background information on visual mathematics and an overview of selected
animations concerned with mathematical visualization.

1. Introduction. The intention of this paper is to show the natural interrelation-
ship between calculus mathematics and computer graphics. This article will
concentrate for the most part in IT perspective on the progress, techniques, and
prospects of mathematical visualization, emphasizing those areas of 2D and 3D
geometry where interactive paradigms are of growing importance. [1]

Due to substantial changes that technology has brought in the recent years,
instruction in mathematics will have to catch up with the new circumstances or
else become increasingly irrelevant. With added pressure from rapid develop-
ment in Multimedia, it is even more demanding to train our students to think
clearly, critically, constructively, and creatively about problems they might
encounter in real world. It is our job to help students to gain the ability to use
mathematical methods and tools whenever they seem appropriate and helpful.
Computer oriented mathematics courses should focus more on cooperative
learning, problem solving, and investigative learning as an important part of
education.

2. Computer Algebraic System. In the mid-eighties the availability of CAS for
personal computers attracted mathematics educators to the possibility of using
them in the classroom. CAS technology with its powerful combination of nu-
meric and symbolic computation, colorful 2D & 3D graphics as in figure 1 and

	1-9_pages_reduced.pdf

