И.А. РЯБЕНКОВ

ОПРЕДЕЛЕНИЕ УСЛОВИЙ УМЕНЬШЕНИЯ ТЕМПЕРАТУРЫ ШЛИФОВАНИЯ И ГЛУБИНЫ ЕЕ ПРОНИКНОВЕНИЯ В ПОВЕРХНОСТНЫЙ СЛОЙ ОБРАБАТЫВАЕМОЙ ДЕТАЛИ

Приведены уточненные и приближенные аналитические зависимости для расчета температуры шлифования и глубины ее проникновения в поверхностный слой обрабатываемой детали и определены условия уменьшения указанных параметров

Обеспечение высококачественной обработки деталей машин является важнейшим условием создания конкурентноспособной машиностроительной продукции. В связи с этим важно знать технологические возможности процесса шлифования в плане уменьшения температуры шлифования и глубины ее проникновения в поверхностный слой обрабатываемой детали, поскольку при шлифовании, как правило, окончательно формируются параметры качества обработки. Для этого необходимо расширить наши представления о физических закономерностях формирования тепловой напряженности процесса шлифования. В работах [1, 2] приведены важные результаты теоретических и экспериментальных исследований температуры шлифования. Используя их, аналитически опишем температуру шлифования и определим пути ее уменьшения. Целью работы является обоснование путей уменьшения температуры шлифования и глубины ее проникновения в поверхностный слой обрабатываемой детали для обеспечения высококачественной обработки.

Проведем теоретический анализ температуры θ , возникающей в процессе микрорезания единичным зерном. Для этого рассмотрим расчетную схему (рис. 1), в которой снимаемый припуск условно представлен в виде множества бесконечно тонких адиабатических стержней, перерезаемых со скоростью V_{pes} . Для определения θ воспользуемся аналитической зависимостью [3]:

$$\theta = \frac{\sigma}{c \cdot \rho} \cdot z \,, \tag{1}$$

где σ – условное напряжение резания, Н/м²; C – удельная теплоемкость обрабатываемого материала, Дж/(кг·К); ρ – плотность материала, кг/м³; z – относительная величина температуры (z =0...1), определяется из уравнения:

$$\overline{l_1} = \frac{c \cdot \rho}{\lambda} \cdot a \cdot V_{pes} = -\ln(1-z) - z , \qquad (2)$$

$$V_{pes} = \frac{a}{\tau} = a \cdot \frac{V_{\kappa p}}{h} = V_{\kappa p} \cdot tg\beta , \qquad (3)$$

Рис. 1. Расчетная схема процесса микрорезания отдельным зерном: 1 – режущее зерно; 2 – обрабатываемый материала; 3 – адиабатический стержень.

На рис. 1 графически показан характер изменения относительной величины температуры z в зависимости от пути перемещения теплового источника вдоль адиабатического стержня $l_1 = V_{pes} \cdot \tau$, где τ – время действия теплового источника на фиксированный адиабатический стержень, с. Как видно, относительная величина температуры z изменяется в пределах от нуля до единицы. Следовательно, срезаемый слой материала толщиной a и образующаяся стружка будут нагреваться неравномерно. Чем больше толщина среза a, тем больше относительная величина температуры z. Соответственно больше доля тепла, уходящего в образующуюся стружку, и меньше доля тепла, уходящего в обрабатываемую деталь.

Как следует из зависимости (1), уменьшить температуру θ можно прежде всего за счет уменьшения условного напряжения резания σ . В свою очередь, уменьшение σ предполагает увеличение условного угла сдвига материала при резании β , т.к. они связаны обратно пропорциональной зависимостью [4]:

$$tg\beta = \frac{\sigma_{cm}}{\sigma},\tag{4}$$

где σ_{cxc} – предел прочности обрабатываемого материала на сжатие, H/M^2 .

Увеличение угла β , согласно зависимостям (2) и (3), ведет к увеличе-

нию безразмерной величины $\overline{l_1}$ и соответственно относительной величины температуры z. Следовательно, условное напряжение резания σ (которое входит в зависимость (1) как непосредственно, так и в виде функции z) неоднозначно влияет на температуру резания θ , определяемую зависимостью (1). В связи с этим произведем оценку влияния условного напряжения резания σ на температуру резания θ . Для этого подставим зависимость (4) в зависимость (2) и разрешим ее относительно σ :

$$\sigma = \frac{c \cdot \rho}{\lambda} \cdot \frac{\sigma_{cxc}}{\overline{l_1}} \cdot a \cdot V_{sp} \,. \tag{5}$$

Как видно, с увеличением безразмерной величины $\overline{l_1}$ и соответственно относительной величины температуры *z* условное напряжение резания σ уменьшается. Полученную зависимость (5) подставим в зависимость (1):

Рис. 2. Зависимость $z / \overline{l_1}$ от z.

$$\sigma = \frac{\sigma_{cxx}}{\lambda} \cdot \frac{z}{\overline{l_1}} \cdot a \cdot V_{xp} \quad . \tag{6}$$

Зависимость $z/\overline{l_1}$ от z приведена на рис. 2. С увеличением относительной величины температуры z функция $z/\overline{l_1}$ и соответственно температура резания θ непрерывно уменьшаются. Однако, с увеличением $\overline{l_1}$ (или z), как следует из зависимости (5), уменьшается условное напряжение резания σ . Поэтому с уменьшением σ будет уменьшаться и температура резания θ . Следовательно, между температурой резания θ и условным напряжением резания σ существует вполне однозначная связь: чем меньше σ , тем меньше θ .

Зависимость (2) неявно выражена через относительную величину температуры z, что ограничивает возможности ее анализа. В связи с этим выра-

зим относительную величину температуры z через параметры процесса микрорезания единичным зерном, для чего входящую в выражение $\overline{l_1} = -\ln(1-z) - z$ функцию $\ln(1-z) = \ln x$ (где x < 1) разложим в ряд:

$$\ln x = \frac{x-1}{1} - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \dots = -\left(\frac{z}{1} + \frac{z^2}{2} + \frac{z^3}{3} + \dots\right), \text{ тогда}$$
(7)

$$\overline{l_1} = \frac{z^2}{2} + \frac{z^3}{3} + \frac{z^4}{4} + \dots$$
(8)

Поскольку z < 1, представим зависимость (8) в упрощенном виде:

$$\overline{l}_1 = \frac{z^2}{2} \quad . \tag{9}$$

Подставим зависимость (9) в (2) и полученное выражение разрешим относительно величины z с учетом $V_{peg} = V_{\kappa p} \cdot tg\beta$:

$$z = \sqrt{2 \cdot \frac{c \cdot \rho}{\lambda} \cdot a \cdot V_{pes}} . \tag{10}$$

Таким образом, получена аналитическая зависимость, в явном виде устанавливающая связь между относительной величиной температуры z и параметрами процесса микрорезания единичным зерном. Как видно, с увеличением толщины среза a и скорости V_{pes} движения теплового источника вдоль адиабатического стержня величина z увеличивается. С учетом зависимости (10) может быть в явном виде выражена зависимость (1):

$$\theta = \frac{\sigma \cdot z}{c \cdot \rho} = \sigma \cdot \sqrt{\frac{2}{c \cdot \rho \cdot \lambda}} \cdot a \cdot V_{_{kp}} \cdot tg\beta .$$
(11)

Подставляя (4) в зависимость (11), окончательно имеем

Рис. 3. Графики зависимостей $\overline{l_1} = -\ln(1-z) - z$ (1) и $\overline{l_1} = z^2/2$ (2).

$$\theta = \sqrt{\frac{2a \cdot V_{\kappa \rho} \cdot \sigma \cdot \sigma_{c \infty}}{c \cdot \rho \cdot \lambda}} \quad . \tag{12}$$

Как видно, уменьшить температуру в можно уменьшением условного

напряжения резания σ , толщины среза *a* и $V_{\kappa p}$. Причем, все три указанных параметра в одинаковой степени влияют на температуру θ . Необходимо отметить, что упрощенное решение (9) и полученные на его основе аналитические зависимости (10) и (12) справедливы для условия *z* <0,6, рис. 3.

Определим толщину слоя l_2 детали, в котором концентрируется выделяемое при обработке тепло [5], с учетом зависимости (8):

$$l_{2} = a \cdot \frac{z}{\overline{l_{1}}} = \frac{a}{\left(\frac{z}{2} + \frac{z^{2}}{3} + \frac{z^{3}}{4} + \dots\right)}.$$
 (13)

Как следует из зависимости (13), с увеличением относительной величины температуры z параметр l_2 уменьшается, что хорошо согласуется с графиком функции $z/\overline{l_1}$, показанной на рис. 2. Рассматривая безразмерную величину $\overline{l_1}$ в упрощенном виде (9) с учетом зависимости (13), параметр l_2 выразится:

$$l_2 = \frac{2 \cdot a}{z} \quad . \tag{14}$$

Подставим в (14) зависимость (10):

$$l_2 = \sqrt{2 \cdot \frac{\lambda}{c \cdot \rho} \cdot \tau} = \sqrt{2 \cdot \frac{\lambda}{c \cdot \rho} \cdot \frac{a}{V_{\kappa p} \cdot tg\beta}}, \qquad (15)$$

где $\tau = a/V_{pes}$ – время действия теплового источника на фиксированный адиабатический стержень, с.

Таким образом показано, что параметр l_2 вполне однозначно определяется временем τ , т.е. временем перерезания стержня. Чем меньше τ , тем меньше толщина слоя l_2 обрабатываемой детали, в котором концентрируется выделяемое при обработке тепло. Уменьшить время τ можно уменьшением толщины среза *а* и увеличением скорости круга $V_{\kappa p}$.

Перейдем теперь к анализу процесса шлифования. В работе [3] установлено, что при шлифовании *z* определяется из уравнения, аналогичного (2):

$$\overline{l_1} = \frac{c \cdot \rho}{\lambda} \cdot t \cdot V_{pes} = -\ln(1-z) - z , \qquad (16)$$

где $V_{pes} = V_{\partial em} \cdot \sqrt{t/2R_{\kappa p}}$; $V_{\partial em}$ – скорость детали, м/с; t – глубина шлифования, м; $R_{\kappa p}$ – радиус шлифовального круга, м.

Раскладывая функцию $\ln(1-z)$ в ряд (7), уравнение (16) примет вид:

$$\overline{l}_{1} = \frac{c \cdot \rho}{\lambda} \cdot t \cdot V_{pes} = \frac{z^{2}}{2} + \frac{z^{3}}{3} + \frac{z^{4}}{4} + \dots$$
(17)

Ограничиваясь первым слагаемым в разложении (17), т.е. рассматривая безразмерную величину $\overline{l_1}$ в упрощенном виде (9), величина *z* определится:

$$z = \sqrt{2 \cdot \frac{c \cdot \rho}{\lambda} \cdot t \cdot V_{\partial em}} \cdot \sqrt{\frac{t}{2R_{\kappa p}}} .$$
(18)

Как видно, с увеличением глубины шлифования t и скорости детали V_{dem} величина z увеличивается. С учетом зависимости (18) может быть в явном виде выражена температура шлифования θ , определяемая зависимостью (1):

$$\theta = \frac{\sigma \cdot z}{c \cdot \rho} = \sigma \cdot \sqrt{\frac{2}{c \cdot \rho \cdot \lambda} \cdot t \cdot V_{\partial em}} \cdot \sqrt{\frac{t}{2R_{\kappa p}}} .$$
(19)

Температура шлифования θ тем меньше, чем меньше σ и параметры режима шлифования t и V_{dem} . Определим параметр l_2 , для чего воспользуемся приближенной зависимостью (15), в которой время τ представим в виде:

$$\tau = \frac{t}{V_{pes}} = \frac{\sqrt{2t \cdot R_{\kappa p}}}{V_{dem}}.$$
(20)

Окончательно параметр l_2 выразится:

$$l_2 = \sqrt{2 \cdot \frac{\lambda}{c \cdot \rho} \cdot \frac{\sqrt{2t \cdot R_{\kappa \rho}}}{V_{\partial em}}} \quad . \tag{21}$$

Согласно полученной зависимости (21), уменьшить параметр l_2 можно уменьшением глубины шлифования t и увеличением скорости детали V_{dem} .

Необходимо отметить, что приближенные зависимости (18), (19) и (21) позволяют с достаточной для практики точностью рассчитать параметры l_2 , z и θ , поскольку приближенное решение (9) справедливо для условия z < 0.6, которое, как нами установлено [5], реализуется для широкого диапазона изменения параметров режима шлифования t и V_{dem} .

Поступила в редколлегию 21.04.08

Список литературы: 1. Якимов А.В. Оптимизация процесса шлифования. – М.: Машиностроение, 1975. – 175 с. 2. Синтетические алмазы в машиностроении / Под ред. В.Н. Бакуля. – К.: Наук. думка, 1976. – 351 с. 3. Новиков Ф.В., Яценко С.М. Повышение эффективности технологии финишной обработки деталей пар трения поршневых насосов // Труды 13-й Международной научно-технической конференции. Физические и компьютерные технологии. – Харьков: ХНПК "ФЭД", 2007. – С. 8-20. 4. Физико-математическая теория процессов обработки материалов и технологии машиностроения / Под общей редакцией Ф.В. Новикова и А.В. Якимова. В десяти томах. – Т.1. "Механика резания материалов" – Одесса: ОНПУ, 2002. – 580 с. 5. Новиков Ф.В., Рябенков И.А. Теоретический анализ условий повышения качества обработки по температурно, укритерию // Вісник Харківського національного технічного університету сільського господарства ім. Петра Василенка. – Х.: ХНТУСГ. – 2007. – Вип. 61. – С. 164-171.