УДК: 620.172:621.317.42

В.М. МАЦЕВИТЫЙ, д-р. техн. наук, **Г.Я. БЕЗЛЮДЬКО**, канд. техн. наук, **К.В. ВАКУЛЕНКО**, канд. техн. наук, **И.Б. КАЗАК**, канд. техн. наук, **В.В. КАРАБИН**, канд. техн. наук, Институт машин и систем, г. Харьков

НЕКОТОРЫЕ ЗАКОНОМЕРНОСТИ ИЗМЕНЕНИЯ КОЭРЦИТИВНОЙ СИЛЫ ПЛАСТИЧНЫХ (НЕЗАКАЛЕННЫХ) СТАЛЕЙ ПРИ АКТИВНОМ РАСТЯЖЕНИИ

Legitimacies of change of a coercive force of some constructional steels in a state of delivery are investigated at their fissile tension down to fracture. The linear relation of a gain of a coercive force from $\sqrt{\rho}$, where ρ - a medial dislocation density is confirmed.

Вивчені закономірності зміни коерцитивної сили ряду конструкційних сталей у стані поставки при їх активному розтяганні аж до руйнування. Підтверджена лінійна залежність приросту коерцитивної сили від $\sqrt{\rho}$, де ρ - середня щільність дислокацій.

Введение. Давно известная структурная чувствительность коэрцитивной силы служила основанием для активного использования этого свойства ферромагнитных материалов для контроля их структурного состояния. И в настоящее время путем измерения коэрцитивной силы контролируется химический состав и качество ее термообработки, кроме того, при известных химическом составе стали и режиме ее термообработки можно рассчитать ее коэрцитивную силу [1]. В основе влияния структуры сталей на их коэрцитивную силу лежат силовые и энергетические взаимодействия перемещающихся при перемагничивании ферромагнетика доменных границ с дефектами кристаллической решетки, а также участие «виновников» ферромагнетизма – электронов недостроенных *d*-оболочек атомов в формировании сил межатомной связи. По этой причине любое нагружение сил межатомной связи сразу же отражается на магнитных свойствах металла. Считают, что величина коэрцитивной силы является функцией расстояния между дислокациями в металле: чем меньше расстояние между дислокациями, тем больше коэрцитивная сила: $H_c \sim A/S$, где A – постоянная для конкретного материала, а S – расстояние между дислокациями [2]. Нетрудно показать, что в этом случае $H_c \sim K \sqrt{\rho}$, где ρ – средняя плотность дислокаций, K – постоянная для конкретного материала.

В настоящее время в связи с острой проблемой ресурса дорогостоящего оборудования, большое внимание уделяется возможности определения остаточного ресурса металлоконструкций путем использования методов неразрушающего контроля состояния материалов. В частности, для стальных изделий, материал которых имеет достаточно большой запас пластичности, с успехом применяется коэрцитиметрия, например, в течение уже многих лет,

для этих целей широко используются приборы фирмы «Специальные научные разработки» (г. Харьков), в частности, структуроскоп-коэрцитиметр КРМ-Ц-К2М. В основе метода лежит предположение о том, что пластичные стали (это могут быть стали после нормализации, отжига, либо стали в состоянии поставки после горячей прокатки или ковки) в процессе статического нагружения, а также при циклическом нагружении в области малоцикловой усталости, разрушаются после достижения определенного уровня коэрцитивной силы. Предполагается, что этот уровень соответствует максимальной нагрузке при активном растяжении стали, т.е. по существу – достижению $\sigma_{\rm B}$. Нам представляется, что для выяснения физического смысла указанного предположения, справедливость которого, кстати говоря, хорошо оправдывается на практике, необходимы дополнительные специальные исследования.

Цель настоящей работы состоит в изучении закономерностей изменения коэрцитивной силы ряда конструкционных сталей в состоянии поставки при их активном растяжении вплоть до разрушения.

Методика исследования. Разрывные образцы, соответствующие эскизу, представленному на рис. 1, были изготовлены из трех сталей (40X; ШХ15 и 60С2). Микротвердость сталей определялась на полированной рабочей поверхности готовых к испытаниям образцов с помощью ПМТ-3. Она составляет для стали 40X - 1900 МПа, для стали 11X15 - 2000 МПа и для стали 11X15 - 2000 МПа.

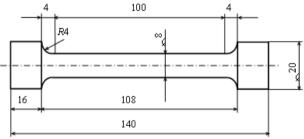


Рис. 1. – Эскиз образцов для испытаний на разрушение

Образцы деформировались растяжением на разрывной машине УИМ-50М. Коэрцитивная сила определялась на структуроскопе-коэрцитиметре КРМ-Ц-К2М (прибор изготовлен Харьковской фирмой «Специальные научные разработки») как среднее трех измерений. Измерения осуществлялись на образцах через двое суток после заданной деформации или разрушения.

В табл. представлены механические свойства образцов и значения коэрцитивной силы до деформации.

Таблица – Механические характеристики и коэрцитивная сила материала образцов

Материал образцов	σ₃, МПа	σ _{0,2} , ΜΠα	δ, %	H_c , А/см
Сталь 40Х	677	408	18,46	8,1-8,27
Сталь ШХ15	617	298,5	24,3	7,5–7,9
Сталь 60С2	1047	597	12,42	8,4–9,2

Результаты и их обсуждение. На рис. 2—4 представлены кривые изменения растягивающего усилия P от величины пластической деформации $\varepsilon_{\text{пл}}$ при растяжении образцов из сталей 60C2, ШХ15 и 40X, а также соответствующие кривые изменения коэрцитивной силы указанных сталей. При построении последних были использованы не только значения H_c , измеренные непосредственно на образцах после их разгрузки (после достижения конкретных значений ε), но также значения H_c , соответствующие условному пределу текучести сталей $\sigma_{0,2}$, которые удалось получить без непосредственных измерений в результате обработки результатов, о чем будет сказано ниже.

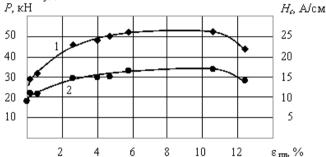


Рис. 2. — Зависимости растягивающего усилия (кривая 1) и коэрцитивной силы (кривая 2) от величины пластической деформации образцов из стали 60C2

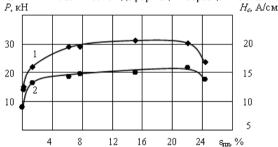


Рис. 3. — Зависимости растягивающего усилия (кривая 1) и коэрцитивной силы (кривая 2) от величины пластической деформации образцов из стали ШХ15 P, кН H_6 . А/см

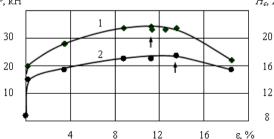


Рис. 4. – Зависимости растягивающего усилия (кривая 1) и коэрцитивной силы (кривая 2) от величины пластической деформации образцов из стали 40X

Из рис. 2–4 следует, что форма кривых зависимости P и H_c от деформации подобна для всех исследованных сталей: сначала быстрый, но затухающий рост этих характеристик, достижение максимума и дальнейшее падение. Но подобие форм не означает полного соответствия. Есть основания считать, что максимумы на кривых $H_c = H_c(\varepsilon)$ иногда достигаются при большей пластической деформации, например, это заметно на стали 40X (максимумы отмечены стрелками). Однако увеличение H_c на участке между максимумами кривых весьма незначительные, поэтому положения, принятые в практике использования H_c для определения «критических» состояний материала перед разрушением, заключающиеся в том, что «критическому» состоянию соответствует значение H_c при достижении предела прочности, весьма близко к истине.

Следует при этом отметить, что более физичным представляется не растягивающее усилие, и не предел прочности, а истинное напряжение течения $\sigma_{\text{ист}}$. При условии равномерности макропластической деформации образцов (отсутствие выраженной шейки) это напряжение легко определяется: $\sigma_{\text{ист}} = P/S_{\text{ист}}$, где P – растягивающая сила, а $S_{\text{ист}}$ – истинная площадь поперечного сечения образца. На кривых зависимости $\sigma_{\text{ист}}$ от $\epsilon_{\text{пл}}$ более четко просматривается упрочнение металла, которое подтверждается и измерением микротвердости (см. рис. 5-7). К моменту начала развития шейки (этому моменту соответствует последняя точка на кривых $\sigma_{\text{ист}} =$ $\sigma_{\text{ист}}(\epsilon_{\pi\pi}))$ металл получает значительное упрочнение. Хотя на стадии развития шейки принципиально упрочнение может еще несколько увеличиться, в основном, развитие шейки сопровождается разупрочнением, что хорошо фиксирует коэрцитивная сила. При этом уменьшается и усилие растяжения, однако, в отличие от коэрцитивной силы уменьшение усилия связано, в основном, с быстрым уменьшением площади поперечного сечения образца в шейке, а не с разупрочнением металла.

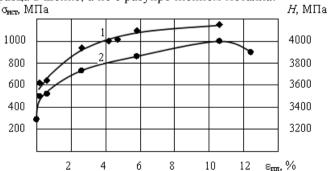


Рис. 5. — Зависимость $\sigma_{\text{ист}}$ (кривая 1) и микротвердости (кривая 2) от пластической деформации растяжением образцов из стали 60C2

Причиной структурного разупрочнения металла, как известно, является уменьшение плотности дислокаций в нем в связи с динамическим отды-

хом, кроме этого, разупрочнению может способствовать увеличение концентрации субмикроразрушений. Оба эти процесса обеспечивают снижение внутренних напряжений, что и приводит к уменьшению коэрцитивной силы.

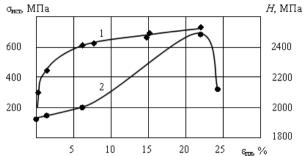


Рис. 6. — Зависимость $\sigma_{\rm ист}$ (кривая 1) и микротвердости (кривая 2) от пластической деформации растяжением образцов из стали IIIX15

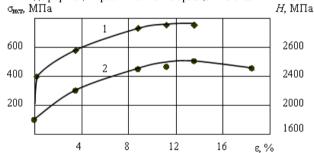


Рис. 7. — Зависимость $\sigma_{\text{ист}}$ (кривая 1) и микротвердости (кривая 2) от пластической деформации растяжением образцов из стали 40X

Весьма интересным представляется анализ зависимости приращения коэрцитивной силы при деформации от величины $(\sigma_{\text{ист}} - \sigma_{0,2})$ – см. рис. 8. Как видно из рисунка указанная зависимость имеет линейный характер для всех исследованных сталей, хотя углы наклона прямых для разных сталей отличаются. Линейный характер этих зависимостей позволяет не только определить значения ΔH_c , соответствующие условному пределу текучести $\sigma_{0,2}$ сталей (это достигается экстраполяцией прямых до пересечения с осью ординат), но и получить косвенное подтверждение того, что коэрцитивная сила, действительно, пропорциональна $\sqrt{\rho}$, где ρ – средняя плотность дислокаций.

Действительно, линейную зависимость ΔH_c от $(\sigma_{\text{ист}}-\sigma_{0,2})$ можно представить в виде $\Delta H_c=\left(\sigma_{\text{ист}}-\sigma_{0,2}\right)$ $\beta+(\Delta H_c)_{\sigma_{0,2}}$. Поскольку известно [см. например 3], что напряжение течения $\sigma_{_{\rm T}}=\sigma_0+\alpha Gb\sqrt{\rho}$, где σ_0 – предел теку-

чести материала, G – модуль сдвига, b – вектор Бюргерса, α – коэффициент, то можно утверждать, что $\Delta H_c = \alpha G b \beta \sqrt{\rho} + \left(\Delta H_c\right)_{\sigma_{c}}$.

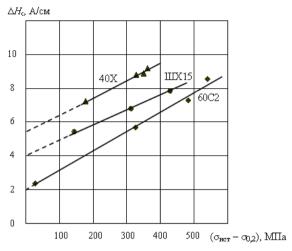


Рис. 8. – Зависимости приращения коэрцитивной силы от величины $\sigma_{\text{ист}} - \sigma_{0.2}$

Выводы: 1) Показано, что для сталей 40X, ШХ15 и 60С2 в состоянии поставки характер зависимостей растягивающего усилия и коэрцитивной силы от пластической деформации одинаков: быстрый, но затухающий рост в начале деформации сменяется очень медленным ростом, достижением максимума и дальнейшим уменьшением характеристик к моменту разрыва образцов; 2) Установлено, что положение, принятое в практике использования H_c для определения критических состояний незакаленных сталей перед разрушением, заключающееся в том, что критическому состоянию соответствует уровень H_c , достигаемый при максимальной растягивающей нагрузке, можно считать обоснованным; 3) Анализ поведения истинного растягивающего напряжения при растяжении показывает, что эта характеристика нагляднее отражает динамику упрочнения и разрушения металла. При этом установлено, что для рассматриваемых сталей прирост коэрцитивной силы линейно зависит от $\sqrt{\rho}$, где ρ — средняя плотность лислокаций.

Список литературы: 1. *Богачева Н.Д.* Расширение возможностей применения коэрцитивной силы /Н.Д. Богачева // В мире неразрушающего контроля. – 2008. – №2. – С.8-10. 2. Энциклопедия неорганических материалов. В 2 т. Т.1 – Киев, 1977. – 840 с. 3. *Трефилов В.И.* Физические основы прочности тугоплавких металлов. / В.И. Трефилов, Ю.В. Мильман, С.А. Фирстов. – Киев: «Наукова думка», 1975. – 313 с.

Поступила в редколлегию 29.01.2010