С.Н. БЕЛЯЕВ (г. Харьков)

МОДЕЛИРОВАНИЕ РАБОТЫ СТАБИЛИЗАТОРА ВООРУЖЕНИЯ ЛЕГКОБРОНИРОВАННОЙ БОЕВОЙ МАШИНЫ, ПОСТРОЕННОГО НА ОСНОВЕ БЕСПЛАТФОРМЕННОЙ ИНЕРЦИАЛЬНОЙ СИСТЕМЫ

У статті наведено результати комп'ютерного моделювання спрощеної моделі стабілізатора озброєння легкоброньованої бойової машини, побудованого на основі безплатформеної інерціальної системи. Виконано аналіз одержаних перехідних процесів.

In the article the simulation results of the simplified model of the light-armored fighting vehicle armament stabilizer are considered. Analysis of the transients obtained is made.

Постановка задачи. Объекты бронетехники оснащаются стабилизаторами вооружения – специальными системы автоматического регулирования, позволяющими эффективно вести прицельный огонь с ходу. Эффективное ведение огня с ходу без стабилизатора невозможно из-за значительных колебаний корпуса бронеобъекта [1]. Стабилизаторы устанавливаются на танки и на легкобронированные боевые машины (ЛБМ) БМП-3, БМД-3 и др. [2].

В стабилизаторах вооружения чувствительными элементами являются гироскопические датчики угла и угловой скорости, служащие для измерения угловых отклонений и угловых скоростей пушки (в вертикальной плоскости) и башни с пушкой (в горизонтальной плоскости). Электронный блок формирует сигнал, пропорциональный этим отклонениям, который подается на исполнительные приводы (гидроцилиндры, электродвигатели) в качестве управляющего воздействия. Уровень развития современной датчиковой аппаратуры и микропроцессорной техники позволяет отказаться от построения стабилизаторов вооружения на дорогостоящих гироскопических приборах, которые имеют достаточно большие габариты и массу, а также требуют существенного времени готовности к работе. В данной статье предлагается использовать принципы бесплатформенных инерциальных систем (БИС) для синтеза стабилизатора вооружения ЛБМ. БИС широко применяются для управления космическими летательными аппаратами и навигации транспортных средств [3, 4]. В таких системах задача определения ориентации объекта сводится к нахождению некоторых параметров, однозначно определяющих угловую ориентацию связанной с объектом ортогональной системы координат по отношению к некоторой принятой за инерциальную системе координат. В качестве параметров ориентации используют углы Эйлера – Крылова, параметры Родрига – Гамильтона (кватернионы), параметры Кейли – Клейна и ряд других. Исходной информацией для вычисления этих параметров являются составляющие вектора угловой скорости вращения связанной с объектом системы координат, измеряемые с помощью датчиков угловой скорости. Параметры ориентации определяются численным интегрированием в бортовом вычислителе кинематических уравнений. Автор предлагает для определения ориентации боевого модуля ЛБМ применять параметры Родрига – Гамильтона, поскольку интегрирование кинематических уравнений в этом случае требует меньшей производительности бортового вычислителя [3].

К стабилизаторам вооружения современных ЛБМ предъявляются жесткие технические требования. Так, к стабилизатору с исполнительным электродвигателем ЭДМ-500 одним из требований является возможность отработки в режиме наведения угла $(3,0 \pm 0,5)^{\circ}$ за время не более 0,1 с.

Анализ последних исследований и публикаций. Пути усовершенствования стабилизаторов основного вооружения бронетехники проанализированы в работах [5, 6]. Возможность отказа от применения механических гироскопов также является объектом исследований отечественных ученых. Так, в работе [7] предлагается использовать микрогироскопы для измерения угловых скоростей в системах стабилизации вооружения ЛБМ взамен обычных гиротахометров.

Формулировка цели статьи. Целью данной работы является анализ принципиальной возможности построения стабилизатора вооружения ЛБМ на основе БИС путем имитационного моделирования.

Исходные допущения. В работе [8] приведена математическая модель совместного движения башенки и боевого модуля ЛБМ, схема взаимного расположения которых на корпусе машины представлена на рис. 1. С целью анализа принципиальной возможности синтеза стабилизатора на основе БИС в этой модели были приняты следующие допущения:

- положение центра масс модуля относительно осей координат, связанных с модулем, характеризуется вектором $\overline{X}_M = col(x_M, 0, 0);$

- положение полюса поворота башенки относительно центра масс машины определяется вектором $\bar{r}_1 = col(0, r_{1v}, 0)$;

- положение полюса системы координат, связанной с модулем, относительно полюса системы координат, связанной с башенкой, характеризуется вектором $\bar{r}_L = col(0, r_{1v}, 0)$;

 при движении машины по пересеченной местности ее подрессоренный корпус колеблется в поперечной и продольной плоскостях с угловыми скоростями и ускорениями, задаваемыми по гармоническим законам таким образом, чтобы моделируемые угловые скорости и ускорения приблизительно соответствовали реальным при движении ЛБМ по пересеченной местности;

- башенка не вращается, т.е. $j_{a_b} = j_{a_b} = 0$, но повернута на некоторый заданный угол $j_b (-2p \le j_b \le 2p)$;

- модуль вооружения вращается вокруг оси цапф, угол поворота $-20^{\circ} \le j_p \le 60^{\circ}$;

- линейные ускорения корпуса ЛБМ не учитываются;

 оси системы координат, связанные с модулем, не являются главными и центральными; тензор инерции модуля задан своими компонентами:

Рис. 1 – Схема расположения модуля вооружения и башенки на корпусе ЛБМ: I -корпус ЛБМ; 2 – башенка; 3 – модуль вооружения; O_c – центр масс машины; $O_c X'_3 Y'_3 Z'_3$ – земная система координат, приведенная к полюсу O_c ; $O_c X_c Y_c Z_c$ – система координат, связанная с корпусом машины (ССК); C_b – центр масс башенки; \overline{X}_b – радиус-вектор положения центра масс башенки; C_p – центр масс модуля; \overline{X}_M – радиус-вектор положения центра масс модуля; $O_b X_b Y_b Z_b$ – система координат, связанная с подвижной относительно корпуса башенкой; \overline{r}_1 – радиус-вектор положения полюса O_b относительно полюса O_c ССК; \overline{r}_L – радиус-вектор положения полюса O_p системы координат $O_p X_p Y_p Z_p$, связанной с поворачивающимся относительно оси $O_p Z_p$ модулем; C_{Σ} , r_{Σ} – соответственно центр масс и радиус-вектор положения центра масс системы «башенка – модуль»; \overline{X}_{pi} и \overline{X}_{bi} – радиус-векторы положения материальных точек P_i и B_i соответственно модуля и башенки Моделирование датчиковой аппаратуры. При имитационном моделировании стабилизатора вооружения ЛБМ учитывалось квантование сигналов с датчиков угловой скорости модуля вооружения по уровню. Принималось, что в дискретные моменты времени значения этих сигналы определяются следующим образом:

$$\boldsymbol{w}_{fi}(nT) = E\left(\frac{\boldsymbol{w}_{pi}(nT)}{\boldsymbol{e}_{p}}\right) \cdot \boldsymbol{e}_{p}; i = x, y, z, \qquad (1)$$

где «E(...)» – целая часть выражения в скобках; n – номер такта работы вычислителя; T – величина такта (принималась равной 0,005 с); $w_{pi}(nT)$ – проекции угловой скорости модуля в моменты времени nT; e_p – цена разряда аналого-цифрового преобразователя (АЦП) (принималось, что АЦП 11-ти разрядное).

Алгоритм вычисления параметров Родрига – Гамильтона. Заданная ориентация модуля определяется соответствующими углами башенки и модуля j_{b_3} и j_{p_3} . Этой ориентации соответствует заданный кватернион $\overline{M} = (m_0, m_1, m_2, m_3)$, компоненты которого определяются по формулам

$$m_0 = \cos \frac{j_{b_3}}{2} \cos \frac{j_{p_3}}{2}; m_1 = \sin \frac{j_{b_3}}{2} \sin \frac{j_{p_3}(0)}{2}; m_2 = \sin \frac{j_{b_3}}{2} \cos \frac{j_{p_3}}{2}; m_3 = \cos \frac{j_{b_3}}{2} \sin \frac{j_{p_3}}{2}.$$

Текущая ориентация модуля определяется численным интегрированием кинематических уравнений методом Эйлера с реверсом и нормировкой.

Обозначим кватернион текущей ориентации модуля $\overline{\Lambda} = (I_0, I_1, I_2, I_3)$, причем $I_0(0) = 1$; $I_1(0) = 0$; $I_2(0) = 0$; $I_3(0) = 0$.

Тогда на нечетном такте работы бортового вычислителя алгоритм определения параметров Родрига – Гамильтона имеет вид:

$$\begin{split} &I_1(n) = I_1(n-1) + \frac{T}{2} \Big\{ I_0(n-1) w_{fx}(n) + I_2(n-1) w_{fz}(n) - I_3(n-1) w_{fy}(n) \Big\}; \\ &I_2(n) = I_2(n-1) + \frac{T}{2} \Big\{ I_0(n-1) w_{fy}(n) + I_3(n-1) w_{fx}(n) - I_1(n) w_{fz}(n) \Big\}; \\ &I_3(n) = I_3(n-1) + \frac{T}{2} \Big\{ I_0(n-1) w_{fz}(n) + I_1(n) w_{fy}(n) - I_2(n) w_{fx}(n) \Big\}; \\ &I_0(n) = \sqrt{1 - I_1^2(n) - I_2^2(n) - I_3^2(n)}, \end{split}$$

а на четном такте составляющие кватерниона вычисляются в обратной последовательности:

$$\begin{split} &I_{3}(n) = I_{3}(n-1) + \frac{T}{2} \Big\{ I_{0}(n-1) w_{fz}(n) + I_{1}(n-1) w_{fy}(n) - I_{2}(n-1) w_{fx}(n) \Big\}; \\ &I_{2}(n) = I_{2}(n-1) + \frac{T}{2} \Big\{ I_{0}(n-1) w_{fy}(n) + I_{3}(n) w_{fx}(n) - I_{1}(n-1) w_{fz}(n) \Big\}; \\ &I_{1}(n) = I_{1}(n-1) + \frac{T}{2} \Big\{ I_{0}(n-1) w_{fx}(n) + I_{2}(n) w_{fz}(n) - I_{3}(n) w_{fy}(n) \Big\}; \\ &I_{0}(n) = \sqrt{1 - I_{1}^{2}(n) - I_{2}^{2}(n) - I_{3}^{2}(n)} , \end{split}$$

где W_{fx} , W_{fy} , W_{fz} – сигналы с датчиков угловой скорости, определяемые по формуле (1).

Формирование управляющего воздействия. Составляющие кватерниона рассогласований $d\overline{\Lambda} = (dl_0, dl_1, dl_2, dl_3)$ определяется следующим образом:

$$dl_0(n) = m_0(n)l_0(n) + m_1(n)l_1(n) + m_2(n)l_2(n) + m_3(n)l_3(n);$$

$$dl_1(n) = m_0(n)l_1(n) - m_1(n)l_0(n) - m_2(n)l_3(n) + m_3(n)l_2(n);$$

$$dl_2(n) = m_0(n)l_2(n) - m_2(n)l_0(n) + m_1(n)l_3(n) - m_3(n)l_1(n);$$

$$dl_3(n) = m_0(n)l_3(n) - m_3(n)l_0(n) - m_1(n)l_2(n) + m_2(n)l_1(n).$$

Управляющий сигнал формируется по такому закону:

$$U_{g}(n) = -k_{J} \left[2dI_{0}(n)dI_{3}(n) \right] + k_{g} W_{fz}(n); \left| U_{g} \right| \le 27 \text{ B}.$$
⁽²⁾

Управляющий сигнал (2) поступает на обмотку якоря приводного электродвигателя ЭДМ-500, который отрабатывает угловое рассогласование между заданным углом наведения и текущим угловым положением модуля вооружения ЛБМ.

На рис. 2 приведены переходные процессы в стабилизаторе при значениях коэффициентов усиления закона управления (2) $k_J = 250$ и $k_{ge} = 7$ в режиме наведения, полученные в результате имитационного моделирования.

Выводы. Как видно из графиков на рис. 2, время отработки угла наведения величиной 3° (0,052 рад) не удовлетворяет предъявляемым к стабилизатору вооружения ЛБМ техническим требованиям. На основании полученных результатов моделирования можно сделать вывод о необходимости исследований по выбору оптимальных коэффициентов закона управления (2) и применению других законов управления для повышения быстродействия разрабатываемой системы. В целом возможность синтеза стабилизатора вооружения ЛБМ на основе БИС представляется автору вполне реальной, что убеждает в необходимости продолжать исследования.

Рис. 2 – Переходные процессы в стабилизаторе при отработке заданного угла наведения величиной 3° (0,052 рад)

Список литературы: 1. Корнеев. В.В., Кузнеиов М.И., Кузьмин Л.П. и др. Основы автоматики и танковые автоматические системы. - М.: АБВТ, 1976. - 546 с. 2. Карпенко А.В. Обозрение отечественной бронетанковой техники (1905–1955 гг.). – СПб: Невский бастион, 1996. – 480 с. 3. Интегрированные системы ориентации и навигации для морских подвижных объектов / О. Н. Анучин, Г. И. Емельянцев / Под общ. ред. чл.-кор. РАН В.Г. Пешехонова. - СПб., 1999. -357 с. 4. Бранец В.Н., Шмыглевский И.П. Введение в теорию бесплатформенных инерциальных навигационных систем. – М.: Наука, 1992. – 280 с. 5. Оліярник Б.О., Чайковський Р.І., Бондарук А.Б. Шляхи модернізації системи наведення і стабілізації серійних танків // Механіка та машинобудування. – 2006. – № 2. – С. 183–189. 6. Александров Е.Е., Богатыренко К.И., Истомин А.Е. Физическое моделирование нейросетевой микропроцессорной системы наведения танковой пушки // Артиллерийское и стрелковое вооружение. - 2007. - № 1. - С. 27-30. 7. Оліярник Б.О., Чайковський Р.І., Бондарук А.Б. Застосування мікрогіроскопів у стабілізаторах основного озброєння легкоброньованої техніки // Механіка та машинобудування. – 2007. – № 2. - С. 87-92. 8. Александров Е.Е., Кононенко В.А., Беляев С.Н., Чайковский Р.И., Якименко О.Н. Об особенностях построения математической модели совместного движения башенки и боевого модуля как объектов регулирования в комплексах управления вооружением для легкобронированных боевых машин // Механіка та машинобудування. – 2007. – № 2. – С. 3–26.

Поступила в редколлегию 29.09.08