7	1520				600			490	
8	1400				720			440	
2.	: 1.		,					. 2002.	122-21
				//			.1990. 11.	. 47-49.	
									20.04.06
658	8.012								
•	•	,			,	"	"(. "(.)	
•	•	,		٠	,	"	"(.)	
					RNABY	(PARN). JABY		« »
				« »			•		
of the hyd categorizat	e gives comparative lrocyclone equipa- tion data of coal and advantage of the	nent pr in the l	oduced hydrocy	by the	e PARN and in th	ABY c ne PAR	ompany (Eng NABY hydro	land). The cyclone ins	technological tallation have

PARNABY ().
PARNA

```
(< 0,045 )
                             [3].
   [4, 5].
                                 [5 - 8],
                                                        [7].
      PARNABY (
                                 81
                                                     [5].
         [9].
```

PARNABY

		, %								-				
-	-									-				
	_													
-										-				
, 3	,	-	-	-	-	-	-	-	-	-				
/ 3	%									(%)				
			« »											
330	37,6	43,9	20,2	24,3	41,0	68,2	27,6	31,8	59,0	50,32				
340	38,5	44,4	20,5	24,0	43,3	68,4	28,5	31,6	60,3	51,71				
350	38,4	44,8	20,8	24,8	42,0	69,6	28,4	30,4	61,4	53,57				
360	38,6	45,0	21,1	25,0	41,8	70,0	28,5	30,0	62,2	54,89				
370	39,1	45,0	21,5	24,9	42,3	69,9	28,9	30,1	62,8	55,67				
380	38,4	45,1	20,5	25,1	41,2	70,2	27,9	29,8	63,1	57,14				
390	38,5	44,7	20,1	24,1	41,8	68,8	27,7	31,2	62,3	56,26				
400	37,7	44,3	19,6	24,6	40,3	68,9	27,0	31,1	61,4	55,22				
410	38,3	45,3	21,0	25,1	41,8	70,4	28,4	29,6	61,8	54,13				
420	38,4	44,5	21,1	24,7	41,8	69,2	28,5	30,8	60,7	52,27				
	38,4	44,7	20,6	24,7	41,7	69,4	28,1	30,6	61,8	54,12				
	PARNABY													

220	20.6	C7 1	20.0					22.0	50.4	40.05
330	38,6	67,1	28,9	-	-	-	-	32,9	58,4	48,05
340	38,6	67,7	28,8	-	-	-	-	32,3	59,2	49,51
350	38,1	68,7	28,1					31,3	59,9	51,37
360	38,6	69,0	28,5	-	-	-	-	31,0	61,1	53,09
370	38,6	69,0	28,2					31,0	61,8	54,72
380	38,5	68,8	27,7	-	-	-	-	31,2	62,3	56,26
390	37,7	68,9	27,0	-	-	-	-	31,1	61,4	55,22
400	38,2	69,0	27,8	-	-	-	-	31,0	61,3	54,21
410	38,7	67,5	28,2	-	-	-	-	32,5	60,5	52,69
420	37,6	68,2	27,6	-	-	-	-	31,8	59,0	50,32
	38,3	68,4	28,1	-	-	-	-	31,6	60,5	52,54

```
,
PARNABY.
                           83
       . 1.
                             PARNABY
2.
3.
```

```
, 1972. 196 . 2.
                         , 1980. 224 . 3.
                      , 1981. 304 . 4.
                             . 2-
                                                                 , 1984. 614 . 5.
                                                            , 1978. 232 . 6.
                                          . 136. 1971. - . 56-72. 7.
                                                                   , 1997.-
                                                                                2. – . 26-28.
                                         ", 2003. – 19. – 111-114. 9.
                                                              . .:
                                                                                , 1980. 1999 .
10.
                    ", 2005. - 46. - . 140-143.
                                                                                       22.02.06
      667.61.621.264
Ways of the properties control have been shown by means of pigment-filler ratio changing; evaluation
of the optimal dispersant content; variation of rheology for the pigment pastes based on approaches of
water capacity of pigments. Obtained results can be used as a basis for quality improvement for the
domestic solvent-free paint materials.
                                                                                        [1].
```

[2]. . 1. 85 , % 3 50 45 40 20 5 10 5 25 30 30 30 30 30 19.25 19.25 19.25 19.25 19.25 0.75 0.75 0.75 0.75 0.75 49 98.5 99 49 49 -246 40 48 45 -246 20 40 48 45 iO_2

 TiO_{2}