

(II).

541.13

(II).

The thermodynamic aspects of electrochemical method for Nitrogen(II) oxide steady micro flow were observed. The partial reactions kinetic parameters and limiting stages are established. The NO⁺ reduction from concentrated sulphuric acid solutions was shown to be accompanied by preceding chemical stage and adsorption of electrode-active particles. The technological parameters were optimized in terms of the high efficiency of nitrogen (II) oxide synthesis.

NO_X,

•

 $NO^+ + e NO, E^0 = 0.9$ (1)

(II) (V) (P=1.60 /
3
),
(II) +5⁰ (C) (P=1.60 / 3),

(

$$SO_2 + HNO_{3()} \rightarrow (NO)HSO_4$$
 (2)

,

 P_4O_{10} .

/

(II):

,

, 4 –

,6 7-

s, /						
	j, / ²	Ε,	E /2,	j, / ²	Ε,	E /2,
0,005	1,10	0,460	0,54	2,40	-0,073	0,049
0,010	1,80	0,455	0,535	2,80	0,049	0,126
0,020	2,25	0,436	0,53	2,20	0,049	0,126
0,050	3,25	0,39	0,49	3,40	-0,02	0,090
0,100	3,90	0,35	0,50	3,60	-0,08	0,055

,

$$2H_2O \rightarrow O_2 + 4H^+ + 4e, E^0 = 1,23$$
; (3)

$$2HSO_4^- \rightarrow S_2O_8^{2-} + 2H^+ + 2e, \quad E^0 = 2,01$$
 (4)

,

(H₂SO₄ 95 %)

 $(NO)HSO_4 \rightarrow NO^+ + HSO_4^-$ (5)

_

 $X_s = \Delta \log I_n / \Delta \log s$,

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$Pt (NO)HSO_4, H_2SO_4$$

$$(. .7).$$

$$Pt (NO)HSO_4, H_2SO_4$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .7).$$

$$(. .$$

Pt (NO)HSO₄, H₂SO₄

s, /	j , / ²	j, / ²	j / j
0,01	2,03	1,39	0,685
0,05	4,05	2,26	0,558

Pt (NO)HSO₄, H₂SO₄, (.1), ' 2

_

 $2NO_{()} + 2e \qquad N_2O_2^{2-}, \quad E_0 = 0,1 \quad ;$ (6)

 $SO_4^{2-} + 4H^+ + 2e \qquad SO_2 + 2H_2O, \qquad E_0 = 0.138$, (7)

Pt (NO)HSO₄, H₂SO₄ ,
NO 1,5...3,5 /
2

,

•

,

•

•

(II)

-

-

5-47,

•

1...10 / ². -

(II) 1...5 ppm.

3268

	: 1.	-		/			
: , 19	91175 . 2.			:		, 2000	144 .
3.					/		
:	", 1998 896 . 4.	• •,					
	. – .	, 1981384	. 5.				
	. – .:	-	, 1980 176	. 6.			-
	.: , 1985. –	224 . 7 .	•••,	•			-
				//	– 1973	46,	6. –
.1238 – 1242. 8.					/		
.: , 1985. 9 .	• • •,	•••,					:
			: "	", 200532			

20.07.06