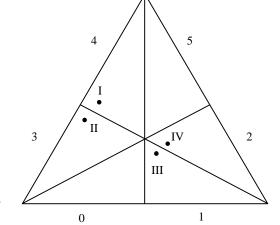

2	1959			-	,	
		600	4 .	-		
	,		[5].	· -	: 1. , , , , , , , , , , , , , , , , , , ,	972. –493 . 4.
	,			[6]. - -	5.	/ : , 2003 - 320 , 1985, .251. 6.
	, [7, .3].		,	- - -		288 . 10
	[8	3].		,		06.09.06
			[9, .	166]:	666.762	
		,	, ;	-	· · · , · · · , · · · , · · · , · ·	. , , , , , ,
;	450 10)50 28	, , , , , , , , , , , , , , , , , , , ,			
[9,	. 121]			10 .		
			(20 %) [9, . 122].	_	-	
				-	In the paper proposed the results of the rheological propert to different deposit depths have been given. The results Nichiporenko technique. The structural - mechanical types tion area for researched clays has been recommended.	earch have been done with usage of S.F
	, [10, .123],		[11].	-		


		-
		_
·		
	,	
	- , –	-
,		-
	18	
: 1-0,7-1,7 ; 2-1,7-3,4 ; -6,1-11,8 ; 6-11,8-14,0 ; 7-1	3 - 3,4 - 4,7 ; 4 - 4,7 - 6,1 ; 4,0 - 17,0 .	; 5
-	(1,5 - 6)	-
(6 - 17), , , ,	,	-
5 7 , 1-2-	, 3 – 4 – , ,	-
2-4	,	
«	,	-
7.00		-
	,	-
«	».	-
,		-
)	(,	-
,) .12.	•	-
	4:1,	3:1,
2:1, 1:4, 1:3 . (. 3, . 4)).	

3

2. 6,1 1 –	-9,0 1	; 2-	2	; 3-	14	W = 40 %:
			/			
		4 /		5		

. 3.	-				
		():	
I –	6,1-9,0 ;	II – 11,8 –	14,0 ; III –	14,0 - 17,0	
(); IV –	14,0 – 17,0 (1	,5 % -).

177

	SiO_2	Al _{2 3}	Fe ₂ O ₃	TiO_2	CaO	MgO	SO ₃	K ₂ O	Na ₂ O	
1	72,22	12,58	3,4	1,0	1,23	0,53	0,05	1,68	0,6	5,74
2	72,1	10,15	3,06	0,82	4,06	0,51	0,08	1,93	0,65	6,62
3	64,13	13,67	4,8	0,82	4,74	0,94	0,05	1,68	0,4	8,78
4	60,15	14,78	5,58	0,85	5,53	0,95	0,02	1,6	0,4	10,45
5	58,8	18,0	6,09	0,89	3,75	0,72	0,02	0,4	0,18	11,14
6	61,26	19,25	6,56	0,95	1,4	0,52	0,06	0,19	0,18	9,85
7	72,81	15,56	1,95	1,56	0,97	0,1	0,02	0,19	0,12	7,07
8	64,73	19,4	2,97	1,06	1,4	0,82	0,24	0,7	0,04	8,72

	SiO_2	TiO_2	Al_{2} 3	Fe_2O_3	MgO	CaO	Na ₂ O	K_2O	
-2	48,5	0,96	35,08	0,76	0,44	0,46	0,14	0,51	13,42
	45	0,83	37,1	0,62	0,46	0,46	0,32	-	11,75
	46,28	-	37,56	0,59	0,35	1,68	1,02	-	13,52

4:1 3:1 2:1 1:1 37,26 35,99 33,87 Al_{2} 3 MgO 1,82 1,92 2,10 60,92 SiO₂ 62,09 63,03 Al_{2 3} 37,09 35,67 32,98 1,69 1,86 2,12 MgO 61,22 62,47 64,90 SiO₂ Al_{2} 3 37,85 36,73 34,86 3 MgO 2,48 2,74 3,17 SiO₂ 59,67 60,53 61,97 38,48 37,27 Al_{2} 3 39,24 2,05 2,18 2,42 MgO 58,71 59,34 SiO₂ 60,31 37,22 36,65 35,60 Al_{2} 3 2,97 6 MgO 2,83 2,70 59,95 60,38 SiO₂ 61,70 37,84 35,87 36,72 Al_{2} 3 7 MgO 1,31 1,22 1,28 SiO₂ 60,85 63,91 62,00 Al_{2 3} 38,96 36,72 38,11 8 1,70 1,80 1,77 MgO SiO₂ 59,34 61,48 60,12

178

666.762.3.001.5

 $MgAl_2O_4$ –

In this article the analysis of literature sources about spinel characteristies and its use for producing the ceramies and refractories as well unmolded one has been presented.

,

, $[1]. \\ MgO - Al_2O_3$

. -MgAl2O4 -

,

1925 (). 0,8086

,

2135 . 8...9.

3,58 / ³[2].

. CaO –

FeO – SiO_2 [3].

.

4:1 3:1 2:1 5:1 39,15 37,6 35,49 Al_2 3 2,9 MgO 2,18 2,7 SiO₂ 62,08 53,64 59,5 40,30 39,01 36,89 Al_{2} 3 MgO 2,35 2,62 3,07 SiO_2 57,35 59,36 60,03 39,82 40,71 36,33 Al_{2} 3 5 MgO 3,26 3,18 3,4 SiO₂ 56,92 68,27 56,11 Al_{2} 3 46,43 47,11 46,60 MgO 1,74 2,09 1,87 SiO_2 51,83 50,80 51,45 Al_{2} 3 40,29 39,02 36,89 MgO 1,18 1,16 1,12 SiO₂ 58,53 59,82 61,99 Al_{2} 3 41,28 40,25 38,54 1,59 1,79 8 MgO 1,67 SiO₂ 59,67 57,13 58,08

5

		4:1	3:1	2:1	1:4	1:3	1:2
	Al _{2 3}	40,34	40,11	38,68	_	_	_
6	MgO	2,69	2,65	2,78			
	SiO ₂	56,97	57,22	55,54			
	Al _{2 3}	39,41	38,18	_	24,79	26,00	28,04
7	MgO	2,44	2,34		1,23	1,32	1,49
	SiO ₂	58,15	59,47		73,98	72,68	70,47
	Al _{2 3}	40,39	39,41	37,80	_	_	
8	MgO	1,84	2,84	2,84			
	SiO ₂	57,77	57,75	59,36			

16.09.06.