-70-23,
-70-23,
-70-23
-70-23
-70-23
-70-23
-70-23
-70-23
-70-23
-70-23
-70-23
-70-23
-70-23
-70-23
-70-23
-70-23
-70-23
-70-23
-70-23
-70-23
-70-23
-70-23
-70-23
-70-23

The process of coating fine $20 \times (60\text{-}100)$ mcm cellulose microfibers with 0.1-0.2 mcm titanium dioxide powder by attrition in a 110-ML 8-cell vibrating mill charged with cylinder grinding medium has been investigated. A high (up to 100 %) surface area coverage and stable rutile adsorption by cellulose fibers has been recorded at capacity of 20 kg/h. Mechanical/chemical modification of powder surfaces (as by mechanical fusion, plating) is a fast growing market of demand in industrially developed countries. The actual demand of the market is now for a large scale commercial production of computer controlled

machines to perform such operations, the product of the machines being free from wear iron contamination.

110-

.1 .2.

7 , 20-70% 5-7 0,1-0,2 10- 20 100-200 . 10; 25, 30 50% Puc.1 50:50%, 30:70; 25:75% 10:90%. $n_e = 1,518$ 100, 200 400 . Puc.Z 60 10-20 (30-150 1 90% 10 / 1 2, .2,

, -

1. 50:50 %

1. 50:50 %

. 200 .

57

8-12 .

60, 48 36 2 24 . 48 24

2 21 g.

::

- ; - ;

. 3.

· , , ,

, . ()

,

110-

	,				1		
	%				-		
	TiO_2 :		,	-	-		
	-			,	,	,	
				•	/	%	
1	2	3	4	5	6	7	8
1	50: 50		25	3	4	98	
		- 45					
2	«	«	25	2	6	80-85	
3	«		25	2,5	12	85	
		48					
4	«	48 . 24	25	2,5	12	90-95	
5	«	«	35	«	12	99,8	
6			35	.,	13	95-97	
7	« «	« «	50	*	4	80-85	
8	«	.60 48 .24	25		6	85-90	
9	«	«	35		6	80	
10	«	«	35		8	78-80	
11	«	36	25		4	90-95	
		.24					
12	«	«	25		8	80-85	
13	«	36	35		8	93-95	
		. 24					
14	25:75	36	35		12	70	
		. 24					
15	«	48	35		8	65-70	
1.0	25 . 75	. 24	25		<i></i>	00.04	
16	25:75	48	35		5,5	90-94	
		24					
17	«	.60+48+	35		20	50	
		36 .24					
18	«	«	50		8	65	
19	«	. 48	25		6	68-70	
		.24					
20	«	«	35		6	65-70	

1	2	3	4	5	6	7	8
22	50:50	. 48, .	35		4	98	
		24					
23	50:50	3	35		8	95	
	(W =	.48, .					
	10%)	24					
24	50:50	«	35		8	65-70	
25	50:50	. 48	35		7	100	-
		. 24					
26	10:90		35		15	30	
27	39:70		35		15	80-85	

25 50 50 48 36 24 . 3 24 , . . 90). 48 270 . 62 83. 10 % 30 %, 25-30 % -15 / . 80-85 % 50:50 %

	, 10 % -				
, , , ,	· , , , , , , , , , , , , , , , , , , ,		1.	《重》	
, – 10 %), - (-			事	
). (30 – 150) 5, 6,, 11, 13, 16, 22, 23, 25 50:50	: - - · -		4	溪	
48 36 35 , 4, 8 12	24 ; -		4. 22.	() (98 %).	50 : 50 %. 100 .
4).		,	· ,	, ,	. 110 –
3. 4.	50 : 50 %. (90 – 95 %).		, 110-	,	110- -

5-10 / . 15-29 .). 16.09.06. 666.26.342

Experimental researches on studying influence of optimal grain compound of fused corundum, content of a matrix, molding-moisture content and frequency of vibrating formation on the properties of low-cement of concrete have been carried out. The results of optimization of the basic technological parameters of refractories from low-cement concrete are given.

[1 - |4].[5, 6]. 90 %, 0,1 -28-38%, . 3-1 27-40 %. 25 % 7 % (40 30

. 110 ° 2 . 2409-95 , 4071.1-94. * ;

7 %

75 %

30

^{*}_ . .