628.4

, , -, 1100° 1700°.

Theoretical and experimental researches of process of dry high temperature burning of hard domestic wastes are conducted, the reactor chart of process, reactor-gasification of unisothermal type, providing flowing of process in two stages at $1100\,^{\circ}$ C and $1700\,^{\circ}$, are developed. The pilot plant is created and efficiency of its work is proved.

1000), . , -

, [1 – 3]. [4, 5]. [4, 5] (). [1] [4, 5] . 1 . 2 (), [6].

	_	, %									
										-	
		C	Н	О	N	S	Cl	-	-	•	-
	, %							A	W	,	$Q^{P}{}_{h}$
	70									%	
	40	11,1	1,5	11,2	0,1	0,08	0,02	6,0	10	31,6	910
	32	4,1	0,6	2,6	0,3	_	_	1,4	23	20,8	280
	4,5	1,8	0,2	1,0	0,2	_	_	0,4	0,9	3,8	170
	3	1,3	0,1	1,0	_	_	_	_	0,6	2,0	100
	3	1,8	0,2	0,5	-	_	_	0,3	0,2	2,4	170
,	2	1,3	0,1	0,3	1	_	_	0,2	0,1	1,0	120
	2	0,3	-	0,3	-	_	_	1,0	0,4	0,7	20
	6	_	_	_	_	_	_	6	_	_	_
	5	_	_	_	_	_	_	5	_	_	_
	2,5	_	_	_	_	_	_	2,5	_	_	_
	100	21,7	2,7	16,9	0,6	0,08	0,02	22,8	35,2	62,3	1770

```
[1, 7, 8]
                                  [9].
                                                                            80 %
                           90 %
                                           , 50 %
                                                       , 95 %
                                                       150
     [10],
                                                                         150
                                              :
                150
       [11].
                     150
                                                     1, 2,
15
                                                     ~ 40 – 45 %.
         70 - 85 \%,
                                                          150
                [1, 7],
```

() 2 3 5...10 %

. 1.

2

	,					
	250	250150	150100	10050	50	
	38	911	911	79	25	
	_	01	210	713	1722	
	0,51	00,5	00,5	0,51	00,5	
	_	01	0,51	0,81,6	0,30,5	
	0,21,3	11,5	0,51	0,31,8	00,6	
	_	_	_	0,30,5	0,50,9	
	_	00,3	0,31	12	1,53	
, -	_	01	0,52	0,51,5	00,3	
	_	_	0,21	0,51,5	0,52	
	00,2	0,30,8	0,20,5	0,20,5	0,20,5	
	_	00,5	00,3	00,4	01	
(7 10	
15)	_	_	_	_	710	
15)						
	410	1115	1822	2030	3040	

. 1,

[12].

. 1.

[1], [4, 5]600 - 1200 ° 1500 -1750°, 1300° [1, 13] 900-1050° , %: $_{n}H_{m}-2.5$, $CH_{4}-26$, $CO_{2}-2$, CO-7, $H_{2}-59$, $O_{2} 0,5, N_2 - 3.$ [14] S N S = N -(1) [15], $\textstyle\sum\limits_{L=1}^{R}\Delta <_{i}\sum\limits_{J=1}^{N} \in _{ij} \sim _{j} \leq 0$ (2)

```
\Delta <_i \sum_{J=1}^N \in_{ij} \sim_j \leq 0
                                                                                                                               (3)
           (2), (3)_{i} –
                                                                                            (
           i); <sub>ij</sub> –
                                                                                                            _{j} \dot{J}-
      , R –
                                                            , \mu_j –
                    A_{j}.
                        [15]
         )
              (3).
                                                   \sum_{j=1}^{N} \in_{ij} A_j = 0 \qquad (i = 1 \dots R)
                                                                                                                               (4)
                        [1, 4, 5]
                                                                                                                             600-
1100°
1200-1600°
                                                              )
```

2 3.

1200° (. 2). (5) (6) 2 (7) 2 $+2_{2}$ $_{2}+2_{2}$ (8) (8), – . 2. (8)), ((6). (8) 5, 6, 7. (5) (6)

5)

(6)

5, 6, 7

6, 7

(5) (6)

10 , (- - -) -, (___) -4

1050°,

$$+3_{2}$$
 $_{4}+_{2}$, (9)

:

$$2 + 2 2 4 + 2 (10)$$

. (10) ,

(5) , (9)

,

, (10).

4 2.

, 4 2

· -

2

(3).

• ,

. 3. , $_{2}$ $_{3}$, $_{3}$ = 700° , $_{1}$ = 10 , $_{2}$.

. 3, (3). + 2 + 2 + 2 + 2 + 2 2 + 2+ 2 2 2 + 2 + 3 2 4 + 2 +2 ₂ ₄ ____D 2 + 2 2 4 + 2 + 3 2 4 + 2 + 2 2 + 2+ 2 2 4 + 3 2 4 + 2 F 2 + 2 2 4 + 2 $3 + 2_{2}$ $_{4} + 2$ 4 + 2 + 3 2 + 2 2 + 2 + 3 2 + 2 2 2 + 2 4 + 2 (. 3) (5) D, F, D D . 3 D

```
(10)
       (5).
                                                           . 3),
            (10)
                     (6)
             D
                             2
   , 3,
                                 3•
                                                           D.
                                              (
                                                                          ),
                            [16].
                                                                    S N_A (1+A) +
h H_2O.
                                                              ) [17],
                                                                [18],
   1
                         1
                  1200 - 1300 °,
                                                                 (5)
                                                                      1750°
        (5, 6, 7)
               (
                   ),
                                                                            ),
                                                                         (
```

(). $N_A + m + _I \cdot \cdot \cdot N_{A'} + m_P = x \quad _I \cdot _I N_{AI} + x_I CO +$ $+x_2 CO_2 + +B_gH_2 + A_gN_2 + K_gO_2 + h_gH_2O + (+1)A M$ (11) N_A , N_A , N_A , N_A , N_A $; m = A M , m_P = m ; M = \sum_{i=1}^{m} \sim_i M_i -$ 2; ();, 1, 2-; $B_g K_g A_g -$ 1 + 1 = 1 + 1 + 2(12) $+ \qquad \cdot = x B_I + 2 (h_g + B_g)$ (13)O $K + {}_{1}k' = x k_{1} + {}_{1} + 2 {}_{2} + h_{g} + 2 K_{g}$ (14) $N \qquad A + \qquad {}_{1}a' = 2 a_{g} + x a_{1}$ (15) $= 1, = 2 = h_g = K_g = 0$ (14) : $(12), \quad _{1}=1+ \quad _{1},$ $Z_1 = \frac{1-k}{k'-1}$ (16)

, .2,3) $_{I}$, $_{2}$, $_{8}$, $_{8}$, $_{8}$, $_{8}$ $_{8}$. $_{8}$. $_{1}$. (12) - $_{1}$, $_{2}$, $_{3}$, $_{4}$, $_{1}$, $_{2}$, $_{3}$, $_{4}$, $_{5}$, $_{7}$, $_{1}$, $_{1}$, $_{2}$, $_{3}$, $_{4}$, $_{5}$, $_{7}$, $_{7}$, $_{1}$, $_{1}$, $_{2}$, $_{3}$, $_{4}$, $_{1}$, $_{2}$, $_{3}$, $_{4}$, $_{5}$, $_{7}$

•

:

$${}_{I} {}_{I}N_{AI} + m + {}_{I} {}_{B'}O_{K'}N_{A'} + n H_{2}O =$$

$$= CO_{2} + 2 H_{2} + l N_{2} + A {}_{I}M {}_{I}$$
(17)

:

$$J^{T_0} + m_0 + SZ_1J^{T_2} + 2 =$$

$$= {}_{1}J^{T_1}co + x_2J^{T_2}co_2 + B_gJ^{T_1}H_2 + A_gJ^{T_1}N_2 + (18)$$

$$+ k_gJ^{T_1}H_2O + C \quad (X+1) \qquad 1$$

$$J^{T_1} + m + SZ_1J^{0} =$$

$$= J^{2}co_2 + 0.5 + J^{T_2} + J^{T_2}N_2 +$$

$$+ C + (x + 1) + (x +$$

, ₂ , _{vy} _

,

:

$$= \qquad = \qquad (20)$$

, , –

= (1 - 0.55V) - - - - = (1 - 0.55V) (1 - 1) - - - (22)

V – , , , –

, [16], -

. 4 7, 5, 11, 14, 26, 27, 2, 3, 4, 18, 19, 21. -1, -2, -3, -4. 7, -2, 600° 13, 13 120 - 140 °, -1, 200 – 250 ° -2, -3. -1, -2 -1, -2 11, 10 600°, 1200...1300°. 1200...1300° -4 23, 25 1500...1700°, 11, 14 -1, -2 -1, -2 -3 -2 . 9, . 1,

1. -

5.

,

1 / . : (11) - 0.5 ; : (11) - D - 0.4 ; -

(5) - 1,5 ; (14) - 1,2 ; (11) - 1,5 ; -5 .

· : (5)

. (11), (14) (22), (25)

, 1650-1750° .

· · ·

- (13).

. 3. -

,

,

-	/	8715,2	_
	0	1700	30
		0,6	0,12
,	/	_	0,25
	-//- -//-	0,407	_
	//	0,33	_
	/	0,615	0,691

. 3

			. 3
:	%	48,34	50,6
2		43,8	29,4
4	-//-	3,53	3,8
2 4	-//-	2,01	_
2	-//-	3,01	15,9
	-//-	0,03	0,01
	-//-	100 (. 0,7%)	100 (. 0,3%)
	/ 3	0,75	1,01
	/	1,7892	4,2319
-	/	17598	10894
, -		0,55	0,11
	/ -	1676	1823
-	/ 3	3000	1850
()	/	0,45	0,55
-		0,6	0,105
	%	92	69
-1, -2	/	0,0143	-
- - 1300 1700°		96	-

, , , , ,

· - ,

, « » , -

, - -

100 / 7 - 10 %; $900 - 1700^{\circ}$, : 1. « ». – 2006. – . 27. – . 138-150. **2.** . . . , , 2006. – 356 . **3.** : , 1999. – 23 . **5.** . . 913720, 10J 3/02; C 10J 3/14. . . 2859299/23-26. . 06.12.79. **6.** . . . – . . – 2005. – 3/1 [15]. – . 72-83. **7.** . – , 2005. – 334 . **8.** . 2164446 13.03.139/06 65F 5/00 .

2000115024/03 15.06.2000. . 27.03.2001.

```
» 9.
                                                                                        2002.- 70 .
10.
                      ., 2002. – 350 . 11.
                                      , 2005. - 458
                                                        . 12.
83 . 13.
                                                                    . – 2005. –     . 825-828. 14.
                                                             , 1987. – 880 . 15. Shinnar R., Feng C.A.
Structure of complex catalytic reactions: thermodynamic constraints in kinetic modeling and catalyst evalu-
ation // Ind. and Eng. Chem. Fundam. - 1985. - 24, 2. - p. 153-170. 16.
1986. – . 8. – . 91-96. 17.
                          //
                                                                                  14. –
18.
                                                    . – 1983. –
                                                                    2. – . 7-11. 19.
   3.729928
              . 48-111, 1971.
                                                                                            21.10.06.
       622.276.6
```

. , -

Questions of breaking down of rocks{rock formation} under act of a heat shock are observed{watched}. It is proved, that concentration of stress in to a zone is instituted by magnitude of a gradient of temperatures.