

1100° 1700°.

,

Theoretical and experimental researches of process of dry high temperature burning of hard domestic wastes are conducted, the reactor chart of process, reactor-gasification of unisothermal type, providing flowing of process in two stages at 1100 °C and 1700 °, are developed. The pilot plant is created and efficiency of its work is proved.

	_		, %								
										-	
								-	-		-
		C	Η	0	Ν	S	Cl			•	D
	%							А	W	,	$Q^{P}{}_{h}$
	,0									%	
	40	11,1	1,5	11,2	0,1	0,08	0,02	6,0	10	31,6	910
	32	4,1	0,6	2,6	0,3	_		1,4	23	20,8	280
	4,5	1,8	0,2	1,0	0,2	_	_	0,4	0,9	3,8	170
	3	1,3	0,1	1,0	_	_	_	_	0,6	2,0	100
	3	1,8	0,2	0,5	_	_	_	0,3	0,2	2,4	170
,	2	1,3	0,1	0,3	_	—	—	0,2	0,1	1,0	120
	2	0,3	—	0,3	—	_	_	1,0	0,4	0,7	20
	6	-	—	_	—	-	_	6	-	_	_
	5	_	_	-	_	_	-	5	_	—	_
	2,5	-	_	_	_	-	-	2,5	_	—	_
	100	21,7	2,7	16,9	0,6	0,08	0,02	22,8	35,2	62,3	1770

		•	[1, 7	7, 8]					
	(,), ,	90 %	[9].	, , 50 %	, , 95 %	,	80	% -
	[10], ,	150 ,			:	150 ,	,	150 ,	- -
15	[11]. 70 –	150 , 85 %, [1, 7],	,			1, 2, , ($\sim 40 - 45 \circ$ 150	%.)

. 1.

,

2

_

-

	,					
	250	250150	150100	10050	50	
	38	911	911	79	25	
	_	01	210	713	1722	
	0,51	00,5	00,5	0,51	00,5	
	_	01	0,51	0,81,6	0,30,5	
	0,21,3	11,5	0,51	0,31,8	00,6	
	_	_	—	0,30,5	0,50,9	
	_	00,3	0,31	12	1,53	
, -	_	01	0,52	0,51,5	00,3	
	_	_	0,21	0,51,5	0,52	
	00,2	0,30,8	0,20,5	0,20,5	0,20,5	
	_	00,5	00,3	00,4	01	
(_	_	—	_	710	
15)						
	410	1115	1822	2030	3040	

. 1,

,

[12].

.

,

•

,

,

. 1.

•

•

•

$$\Delta <_i \sum_{J=1}^N \in_{ij} \sim_j \le 0 \tag{3}$$

((2), (3) $_i$ – i); _{ij} – j **j-**-, *R* – , μ_j – A_{j} . [15] , -() • • •

,

(3).

•

,

,

$$\sum_{J=1}^{N} \in_{ij} A_{j} = 0 \qquad (i = 1 \dots R)$$
(4)

•

,

,

-

_

:

[1, 4, 5] 600-

1100°

1200-1600°

()

2 3.

, 1200° , (. 2). , : + 2 (5) +2 (6) +2 + 2 2 2 (7) 2 +-: + 2 2 2+2 2 (8) , (8), – . 2. (8) •), (, , , , (6). 2 + 2, (8) , (,) , 5, 6, 7. (5) (6) , -,

1200 ,

1050°,

,

$$+3_{2}$$
 $_{4}+2_{2}$, (9)

:

 $2 + 2 _{2} _{4} + _{2} (10)$

:

. 3.

$$_{2}$$
 $_{3}$, $=700^{\circ}$, $=10$, —

(3).

,

,

+ 2	+ 2		+ 2	+ 2
+ 2	2 + 2		+ 2	2 + 2
+ 3 2	4 + 2		+ 2 2	4
			D	
+ 2	2 + 2		2 + 2 ₂	4 + 2
+ 3 2	4 + 2		+ 2	2 + 2
+ 2 2	4		+ 3 2	4 + 2
	-		F	
$3 + 2_{2}$	₄ + 2		2 + 2 2	4 + 2
4 + 2	+ 3 2		+ 2	2 + 2
+ 2	2 + 2		+ 3 2	4 + 2
		(. 3)	(5)	
D F	,			
1,			·	,
,	,		•	D
	D			,
. 3				

. 3,

•

,

_

, _

-

_

-

,

D

,

(10) (5). . 3), ((10) (6) D 2 , . 3, 3. D. (), , , [16]. $S N_A (1+A) +$: $h H_2O.$) [17], ([18], , • , 1 , h -, 1 , , , 1200 - 1300 °, , (5) , • 1750 ° , (5, 6, 7) (),), (- ().

()

,

,

,

· ·

$$N_{A} + m + I + N_{A'} + m_{P} = x - I - N_{AI} + x_{I} CO + + x_{2} CO_{2} + B_{g}H_{2} + A_{g}N_{2} + K_{g}O_{2} + h_{g}H_{2}O + (+1)A M$$
(11)

$$N_A, \quad , \quad N_{A'}, \quad I \quad I N_{AI} - ,$$

; $m = A M , m_P = m - ,$
; $M = \sum_{i=1}^m \sim_i M_i - ; \quad I -$

,

,

_

,

,
$$2; -$$

(); , $1, 2-$, ,
; $B_g K_g A_g -$, , , , ,
; $h_g -$, , .

$$1 + _{1} = + _{1} + _{2} \tag{12}$$

+
$$y = x B_1 + 2 (h_g + B_g)$$
 (13)

O
$$K + {}_{1}k' = x k_{1} + {}_{1} + 2 {}_{2} + h_{g} + 2 K_{g}$$
 (14)

N
$$A + {}_{I}a' = 2 a_g + x a_I$$
 (15)

,
$$= 1, = {}_2 = h_g = K_g = 0$$
 , -
(12), ${}_1 = 1 + {}_1$, (14) :

$$Z_1 = \frac{1-k}{k'-1}$$
(16)

•

$${}_{1} {}_{1}N_{A1} + m + {}_{1} {}_{B'}O_{K'}N_{A'} + n H_2O =$$

= $CO_2 + 2 H_2 + l N_2 + A {}_{1}M {}_{1}$ (17)

:

$$J^{T_{0}} + m_{0} + SZ_{1}J^{T_{2}} + 2 =$$

$$= {}_{1}J^{T_{1}}co + x_{2}J^{T_{2}}co_{2} + B_{g}J^{T_{1}}H_{2} + A_{g}J^{T_{1}}N_{2} + (18)$$

$$+ k_{g}J^{T_{1}}H_{2}O + C (X + 1) {}_{1}$$

$$J^{T_{1}} + m + SZ_{1}J^{0} =$$

$$= J^{2}CO_{2} + 0.5 + J^{T_{2}} + J^{T_{2}}N_{2} + (19)$$

$$+ C + (X + 1) + 2$$

•

•

.

,

:

,

:

$$= (1 - 0.55V) = (1 - 0.55V) (1 - 1)$$
(22)

. 4 -• 7, 5, 11, 14, 26, 27, 2, 3, 4, 18, 19, 21. -1, -2, -3, -4. 7, -2, -1 -, , 600° 13, 13 120 - 140 °, -4, -4 --1, , 200 – 250 ° -2, --3. -1, -2 -1, -2 11, 10 600°, 1200...1300°. 1200...1300° -4 , 23, 25 1500...1700°, 11, 14 -1, -2 -1, -2 -3 • -2 , . 9, . 1,

,

1.

•

, 1 / . (11) – : 0,5 ; (11) - D - 0,4; (14) – 1,2 ; (5) – 1,5 ; (11) – 1,5 ; -5. • (5) : (11), (14) (22), (25) • 1650-1750° , (11), (14) – , • (13). . 3. • [19],

[19]

,

3

,

,

	/	8715,2	_
	0	1700	30
		0,6	0,12
,	/		0.25
	//	0.407	- 0,23
	//	0,33	_
	/	0,615	0,691

			. 3
:	%	48,34	50,6
2		43,8	29,4
4	_//_	3,53	3,8
2 4	_//_	2,01	_
2	_//_	3,01	15,9
	//	0,03	0,01
	//	100 (. 0,7%)	100 (. 0,3%)
	/ 3	0,75	1,01
	/	1,7892	4,2319
-	/	17598	10894
, –		0,55	0,11
	/ -	1676	1823
-	/ 3	3000	1850
()	/	0,45	0,55
-		0,6	0,105
	%	92	69
-1, -2	/	0,0143	_
- - 1300 1700°		96	_

. 3,

-

»

,

,

,

_

,

,

:

,

20

, 《

» 9. ~ « » . 2002.- 70 . " ». – 10. . . (. .. ., 2002. - 350 . 11. . ., , 2005. – 458 . 12. », 2006. – 83 . **13.** // . - 2005. - . 825-828. 14. ». – _ . . – .: , 1987. – 880 . 15. Shinnar R., Feng C.A. . . . Structure of complex catalytic reactions: thermodynamic constraints in kinetic modeling and catalyst evaluation // Ind. and Eng. Chem. Fundam. – 1985. – 24, 2. – p. 153-170. 16. . . _ // 1986. – . 8. – . 91-96. **17.** _ . . ., . ., .) ((). // . – 2005. – ». – 14. – . 3-30. ~ 18. – 1983. – // 2. – . 7-11. 19. 3.729928 . 48-111, 1971.

21.10.06.

622.276.6

Questions of breaking down of rocks{rock formation} under act of a heat shock are observed{watched}. It is proved, that concentration of stress in to a zone is instituted by magnitude of a gradient of temperatures.