Cr (III)

	:1			(,			
):	•	: 05.	17.05.	/		-			
	. – , 1987. – 360 . 2 .					: .	-			
	/		_	:	, 1981. –	. 446 –	452.			
3.	· ·, · ·, · ·,									
		//			. – 1977. –	. 42. –	6.			
_	. 628 – 632. 4 .				/	. –	· .:			
, 1975. – 272 . 5. Becke A.D. Density-functional exchange-energy approximation with correct as-										
ymptotic behavior // Phys. Rev 1988 A. 38 P. 3098 - 3100. 6. Lee C., Yang W., Parr R.G. Devel-										
opr	ment of the Colle-Salvetti carrelation-energy formula	into a	funct	ion of	the electron de	ensity // P	hys.			
Re	ev 1988 B. 37 P. 785 - 789. 7. Becke A. D. Dens	sity-fu	nction	al ther	mochemistry. I	II. The rol	le of			
exa	act exchange // J. Chem. Phys 1993 Vol. 98	5648 -	- 5652	2. 8 . <i>H</i>	ay P.J., Wadt V	<i>N.R.</i> Ab in	nitio			

effective core potential for molecular calculations // J. Chem. Phys. – 1985. – Vol. 82. – P. 270 – 310. 9. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 92/DFT, Revision G.2 / Gaussian Inc. – Pittsburgh: PA, 1993. 10. "GAUSSIAN": [.] / . . .]. – : .

GAUSSIAN'': [.] / . .]. - : .

03.05.08

666.6.

•

A generalised task on making multilayer diffusion silicide coatings is formulated. The equations to calculate parameters of phase formation and redistribution are given, e.g. co-ordinates of interphase boundaries and speed of these boundaries' dislocation. The boundary conditions for these equations are found.

,

•

,

,

(A -), V (V) (A -), V)(A -), V)

-

•

r s,

$$X_{x}A_{u}$$
, ru - xs > 0. (1-4)
(0-4) .1.

	1	2	3	4	5
v	ρσ	α β	γδ	αβ	
0]	1 2	2 3	3 4	
. 1.					

, – [10]. , , ,)

,

,

(

,

$$\mu .$$

$$r s^{2} -$$

$$(1)$$

$$(2)$$

$$(2)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(3)$$

$$(4)$$

$$(3)$$

$$(4)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(6)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

$$(7)$$

•

,

,

•

,

,

,

$$0 \qquad \qquad \mathsf{u}B_{\mathsf{v}} + \mathsf{v}(\dots - 1)A_{\mathbb{m}}B_{\mathsf{u}} \leftrightarrow \dots \mathsf{v}A_{\mathbb{m}}^{-}B\mathsf{u} \qquad (1)$$

$$B_{\rm V} + {\rm V}A_{\rm m}B_{\rm U}^- \leftrightarrow {\rm V}A_{\rm m}B_{\rm U} \tag{2}$$

1
$$A_{\underline{}}^{-}B_{\underline{}} + X_{\underline{}}B_{\underline{}} \leftrightarrow A_{\underline{}}B_{\underline{}} + X_{\underline{}}A_{\underline{}}^{-}$$
(3)

$$(\dots + \mathsf{u} - 1)A_{\dots}B_{\mathsf{u}} \leftrightarrow \dots A_{\dots}B_{\mathsf{u}} + \mathsf{u}A_{\dots}B_{\mathsf{u}}^{-}$$
(4)

$$(r + s - 1)X_{r}A_{s} \leftrightarrow rX_{r}^{-}A_{s} + X_{r}A_{s}^{-}$$
(5)

2,3
$$X_{r}A_{s}^{-} + X_{x}A_{u} \leftrightarrow X_{r}A_{s} + X_{x}A_{u}^{-}$$
(6)

4

)

,

.

$$X_{\Gamma}^{-}A_{s} + X_{x}A_{u} \leftrightarrow X_{\Gamma}A_{s} + X_{x}^{-}A_{u}$$
⁽⁷⁾

$$rX_{x}A_{u} + (ru - xs)X_{r}A_{s}^{-} \leftrightarrow (x + ru - xs)X_{r}A_{s}$$
(8)

$$sX_{x}A_{u} \leftrightarrow (xs - ru + u)X_{r}A_{s} + (ru - xs)X_{r}^{-}A_{s}$$
⁽⁹⁾

$$X_{r}^{-}A_{s} + X \leftrightarrow X_{r}A_{s} + X^{-}$$
(10)

$$rX + (s - 1)X_{r}A_{s} \leftrightarrow sX_{r}A_{s}^{-}$$
(11)

$$X \leftrightarrow X - X^{-} \tag{12}$$

.

$$X_{\Gamma}A_{s} \leftrightarrow X_{\Gamma}A_{s}^{-} + A \tag{13}$$

$$(\qquad [10]. \qquad , \qquad \\ , \qquad & \ddots \qquad \\ , \qquad & - \qquad \vdots \qquad \\ C_{1}^{0} = P^{\frac{1}{-\nu}} E^{\frac{1}{KT} \left\{ \frac{1}{-\nu} x - \frac{1}{-1} - \frac{1}{\nu} \right\}}; \qquad \\ C_{1}^{0} = P^{\frac{1}{-\nu}} E^{\frac{1}{KT} \left\{ \frac{1}{-\nu} x - \frac{1}{-1} - \frac{1}{\nu} \right\}}; \qquad \\ C_{1}^{0} = P^{\frac{1}{-\nu}} E^{\frac{1}{KT} \left\{ \frac{1}{-\nu} x - \frac{1}{-1} - \frac{1}{\nu} \right\}}; \qquad \\ C_{1}^{0} = P^{\frac{1}{-\nu}} E^{\frac{1}{KT} \left\{ \frac{1}{-\nu} x - \frac{1}{-1} - \frac{1}{\nu} \right\}}; \qquad \\ C_{1}^{0} = P^{\frac{1}{-\nu}} E^{\frac{1}{KT} \left\{ \frac{1}{-\nu} x - \frac{1}{-1} - \frac{1}{\nu} \right\}}; \qquad \\ C_{1}^{0} = P^{\frac{1}{-\nu}} E^{\frac{1}{KT} \left\{ \frac{1}{-\nu} x - \frac{1}{\nu} -$$

$$dt, J_1^0 dt + C_1^0 |dG_1^0|.$$

$$\begin{array}{c} & & & & \\ & & & \\ \hline & & \\ &$$

$$\left| d G_{1}^{0} \right| = (1 - \frac{\dots - 1}{\dots}) \left[J_{1}^{0} dt + C_{1}^{0} N_{1} \left| d G_{1}^{0} \right| \right] \cdot \check{S}_{1};$$

, $J_{1}^{0} \check{S}_{1} = -(\dots - C_{1}^{0}) \dot{G}_{1}^{0};$
:

•

$$D_1 \frac{\partial C_1}{\partial} = \dots G_1^0.$$

100

,

... ‡

(4)
$$\left(\frac{\dots}{\dots+\dagger -1}\tilde{j}dt + \frac{\dagger}{\dots+\dagger -1}\tilde{j}dt\right)$$

•

» $\widetilde{j} dt$, = $G_2^1(t)$: ~

,

,

j* –

,

,

$$D^* \frac{\partial C_2^*}{\partial} = \operatorname{r} \dot{G}_2^1$$

$$N_{1}\left\{-D_{1}\frac{\partial C_{1}}{\partial}+\frac{\dots}{\dagger}\widetilde{D}\frac{\partial\widetilde{C}}{\partial}\right\}=N\left\{-D\frac{\partial C_{2}}{\partial}+SG_{2}^{1}\right\}$$
(15)

$$V_{ik}(t)$$
 i^{-} -

,

,

-

(9).

$$V_{1,2} = \dot{G}_2^0 - \dot{G}_1^0 = \dot{G}_2^1 - \dot{G}_1^1 = \dot{G}_2^1 - \frac{1}{\dagger} \tilde{D} \frac{\partial \tilde{C}}{\partial}$$
(16)

$$\frac{1}{\dots}D_{1}\frac{\partial C_{1}}{\partial} - \dot{G}_{2}^{0}\Big|_{=G_{2}^{0}(t)} = \frac{1}{\dots}\widetilde{D}\frac{\partial\widetilde{C}}{\partial} - \frac{1}{\Gamma}D^{*}\frac{\partial C_{2}^{*}}{\partial}\Big|_{=G_{2}^{1}(t)}$$
(17)

j

:

,

, :

•

,

$$J_{2}^{2}dt + C_{3}^{2}N_{3}dG_{3}^{2} = jdt + J_{3}^{2}dt + C_{2}^{2}NdG_{2}^{2}$$

$$-J_{3}^{*2}dt + j^{*}dt + C_{3}^{*2}N_{3}dG_{3}^{2} = -J_{2}^{*2}dt + C_{2}^{*2}NdG_{2}^{2}$$

$$\frac{1}{ru - xs} (rj + sj^{*}) \hat{S}_{3} dt = dG_{3}^{2}$$

$$\left[\left(\frac{x + ru - xs}{ru - xs} - 1 \right) j + \left(\frac{xs - ru + u}{ru - xs} + 1 \right) j^{*} \right] \hat{S} dt = dG_{2}^{2}$$

$$= G_{2}^{2} (t) \qquad :$$

$$x \left(\frac{N_{3}}{N} D_{3} \frac{\partial C_{3}}{\partial} - D \frac{\partial C_{2}}{\partial} \right) + u \left(D^{*} \frac{\partial C_{2}^{*}}{\partial} - \frac{N_{3}}{N} D_{3}^{*} \frac{\partial C_{3}^{*}}{\partial} \right) = (ru - xs) \dot{G}_{2}^{2} \qquad (18)$$

$$V_{1,2} = \dot{G}_{2}^{2} - \dot{G}_{3}^{2} = \dot{G}_{2}^{2} + \frac{1}{ru - xs} \left\{ r \left(\frac{N}{N_{3}} D \frac{\partial C_{2}}{\partial} - D_{3} \frac{\partial C_{3}}{\partial} \right) + s \left(D_{3}^{*} \frac{\partial C_{3}^{*}}{\partial} - \frac{N}{N_{3}} D^{*} \frac{\partial C_{2}^{*}}{\partial} \right) \right\} (19)$$

$$= x = G_{4}^{3}(t) :$$

$$V_{3,4} = \dot{G}_{4}^{3} + \frac{1}{ru - xs} \left[r \left(\frac{N}{N_{3}} D \frac{\partial C_{4}}{\partial} - D_{3} \frac{\partial C_{3}}{\partial} \right) + s \left(D_{3}^{*} \frac{\partial C_{3}^{*}}{\partial} - \frac{N}{N_{3}} D^{*} \frac{\partial C_{4}^{*}}{\partial} \right) \right] \qquad (21)$$

$$= G_{4}^{4}(t) :$$

$$D\frac{\partial C_4}{\partial} + \frac{N_5}{N}\hat{D}\frac{\partial \hat{C}}{\partial} = S\dot{G}_4^4$$
(22)

:

$$V_{5,4} = \dot{G}_4^4 \left(1 - \Gamma \frac{N}{N_5} \right) + D^* \frac{\partial C_4^*}{\partial} - D_5^* \frac{\partial C_5^*}{\partial}$$
(23)

$$(14) - (23).$$

: 1. Tatemoto, K.; Ono, Y.; Suzuki, R. O. Silicide coating on refractory metals in molten salt. // Journal of Physics and Chemistry of Solids, 2005. - V. 66. - Iss. 2 - 4. - P. 526 - 529. 2. J. J. Petrovic. Toughening Strategies for MoSi2-Based High Temperature Structural Silicides. // Intermetallics, 2000. - V. 8. - P. 1175 - 1182. 3. – : « », 1985. – 112 . 4. High Temperature Structural Silicides. // Pros. of the First Hihg Temperature Structural Silicides Workshop, USA, 1991 - Elsevier Sci. Publ., Amsterdam, 1992. - 278 p. 5. . ., . 2. – . 83 – 94. , 1982. – . 2. – . // 6. . ., . // , 2003. – 5/6. – . 120 – 126. 7. . . . // : 1998. - . 20. -10. – . 69 – 75. 8. J.K. Yoon, K.H. Lee, G.H. Kim, J.K. Lee, J.M. Doh, K.T. Hong. Growth Kinetics of MoSi₂ Coating Formed by a Pack Siliconizing Process. // Electrochem. Soc., 2004. -V. 151. - Iss. 6. - . B309 - B318. 9. J. H. Weaver, V. L. Moruzzi, F. A. Schmidt. Experimental and theoretical band-structure studies of refractory metal silicides. // Phys. Rev., 1981. - B. 23. - Iss. 6. - . 2916 - 2922. 10. 6 , 1969. – 69 – 11. .//

12.05.08

666.762.11:666.762.8

 $Al_2O_3 - SiC - C$