22.05.08.

/

:

:

,

544.344.3, 544.971

•	•	,	•	•	,
•	•	,	•	•	, • •
•	•	,	•	•	,

••• , •• , « »

$SrO - BaO - TiO_2$

	298,	S ₂₉₈ ,
=f(),		SrO-BaO-TiO ₂ ,

In article there were calculated output thermodynamic data: enthalpy H^{o}_{298} , entropy S^{o}_{298} , dependence formula of heating capacity from temperature Cp = f(T) for some combinations of system $SrO - BaO - TiO_2$ by different methods. This is important for carrying out thermodynamic analysis of phase equilibriums in this system.

 $SrO - BaO - TiO_2$

298 -

,

298 ;

,

,

 $C_p = f(T)$.

SrTiO₃-BaTiO₃ [1]. $Ba_{2}TiO_{4}$ – 1820 $^{\circ}$, $BaTiO_{3}$ – 1610 $^{\circ}$); BaTi_2O_5 - 1315 $^\circ$, BaTi_4O_9 - 1465 $^\circ$ ((3). • 120 ° 1460 $^\circ$ BaTi₄O₉ [1]. Sr₂TiO₄, $1860 \pm 20^{\circ}$, 1600 $^\circ$. C $Sr_3Ti_2O_7$ 1640 $^\circ$ Sr₂TiO₄ 2040 ± 20 ° SrTiO₃, BaTiO₃, BaTi₂O₅, BaTi₄O₉, Ba₂TiO₄, SrTiO₃, Sr₃Ti₂O₇, [4, 7, 8]. : Ba₃TiO₅, Ba₃Ti₂O₇, Sr₃TiO₅, Sr₂TiO₄, °298 [2, 3]. 1. BaTi₂O₅, BaTi₄O₉, Sr₃Ti₂O₇ . . [4]. [4], 1.

•

•

$$C_p = f(T)$$

,

1

-

 $SrO-BaO-TiO_2 \\$

,

•

,

	– 298, /		S ^o ₂₉₈ , /	
BaO	558,15	[9]	70,29	[9]
SrO	590,36	[9]	54,39	[9]
TiO ₂ –	943,49	[9]	50,21	[9]
BaTiO ₃	1663,56	[9]	105,94	[8]
BaTi ₂ O ₅	2662,09	[7]	173,55	[7]
BaTi ₄ O ₉	4752,72	[7]	271,15	[7]
Ba ₂ TiO ₄	2250,99	[9]	188,43	[9]
Ba ₃ TiO ₅	2733,1	[7]	263,7	[7]
Ba ₃ Ti ₂ O ₇	3725,03	[7]	316,06	[7]
SrTiO ₃	1677,37	[9]	101,00	[8]
Sr ₂ TiO ₄	2283,21	[8]	156,05	[8]
Sr ₃ TiO ₅	2853,55	[7]	212,34	[7]
Sr ₃ Ti ₂ O ₇	3776,14	[7]	243,7	[7]

[6] (XII),

([6]) , 3 - 4 %. : $C_p = +b \cdot 10^{-3} + \cdot 10^{5} -^2,$ (298 –) (–). -

•

(/):

Ba ₃ TiO ₅ :	=43,45+0,016 -298000 ⁻²	(298 – 1673)
Ba ₃ Ti ₂ O ₇ : Sr ₃ TiO ₅ :	$\begin{split} C_p &= 61,\!43 + 0,\!0131 - 611000^{-2} \\ &= -90 + 0,\!0657 \end{split}$	(298 – 1673) (298 – 1833)

,

2

$SrO - BaO - TiO_2$

	$C_p = f(T), /$				
	а	$b \cdot 10^3$	$- c \cdot 10^{-5}$,	
BaO	53,304	4,35	8,301	298 - 1270	[9]
SrO	51,63	4,69	7,56	298 - 1270	[9]
TiO ₂	53,304	4,35	8,301	298 - 1800	[9]
BaTiO ₃	84,5	44,35	_	298 - 1889	[9]
BaTi ₂ O ₅	189,2	83,68	34,396	298 - 1593	[7]
BaTi ₄ O ₉	291,75	68,62	64,14	298 - 1713	[7]
Ba ₂ TiO ₄	146,15	28,03	_	298 - 2133	[9]
Ba ₃ TiO ₅	43,45	16,00	2,98	298 - 1673	[7]
Ba ₃ Ti ₂ O ₇	61,43	13,10	6,11	298 - 1673	[7]
SrTiO ₃	118,11	8,54	19,16	298 - 2313	[9]
Sr ₂ TiO ₄	360,87	- 64,43	_	298 - 2133	[7]
Sr ₃ TiO ₅	- 90,28	65,7	_	298 - 1833	[7]
Sr ₃ Ti ₂ O ₇	243,7	68,62	279,07	298 - 1853	[7]

. 1 . 2.

 $C_p = f(T)$ SrTiO₃, Sr₂TiO₄; Ba₃TiO₅, Ba₃Ti₂O₇, Sr₃TiO₅. BaTiO₃, Ba₂ TiO₄, Sr₃Ti₂O₇,

$$SrO - BaO - TiO_2$$

,

••

[8].

$$\mathbf{G} = \mathbf{f}(\)$$

,

,

 $SrO - BaO - TiO_2$: $1-Ba_3TiO_5;\quad 2-Ba_3Ti_2O_7;\quad 3-Sr_3TiO_5.$

I		I															
	1500	-917,21	-3238,99	79,578	-1530,4	-292,37	-49,483	110,83	-567,34	183,23	370,16	-917,25	-110,83	-2348,7	-589,21	-1530,4	16366,5
ć	1400	-863,81	-3209,1	66,869	-1349,7	-252,53	-43,190	119,59	-535,01	157,82	364,77	-863,81	-119,58	-2394,9	-863,90	-1349,7	16277,4
\	1300	-813,49	-3181,4	54,574	-1175,6	-214,92	-38,828	127,85	-504,19	133,05	359,29	-813,48	-127,84	-2438,9	-776,26	-1175,6	16192,0
Ĝ,	1200	-766,488	-3155,59	42,764	-1175,87	-179,775	-36,438	135,645	-475,178	109,04	353,96	-766,488	-135,645	-2480,70	-866,35	-1008,87	16110,9
	1100	-723,056	-3131,69	31,514	-850,376	-147,012	-36,079	143,010	-448,294	85,939	349,009	-723,056	-143,01	-2520,17	-954,17	-850,376	16034,6

 \mathfrak{c}

ı

81

/			800	900	1000
1.	$\mathbf{S}_3\mathbf{T}_2+2\mathbf{B}_2\mathbf{T}_2$	$3ST + 3B_2T$	-617,25	-648,079	-683,476
2.	$3S_2T+2B_3T_2$	$2\mathbf{S}_3\mathbf{T}_2+3\mathbf{B}_2\mathbf{T}$	-3070,02	-3089,00	-3109,53
3.	$B_3T + 3S$	$3B + S_3T$	2,117	11,074	20,915
4.	$2S_3T + B_3T$	$3B + 3S_2T$	-436,021	-562,541	-701,176
5.	$B_3T_2 + 3ST$	$S_3T_2 + 3BT$	-64,487	-89,217	-116,783
6.	$2B_3T + S_2T$	$3B_2T + 2S$	-47,929	-41,736	-37,818
Т.	$3ST + B_2T$	$2BT + S_3T_2$	162,758	158,547	149,969
8.	$2S_3T_2 + B_2T$	$3S_2T + 2BT$	-384,422	-402,465	-423,915
9.	$S_2T + 2B$	$2S + B_2T$	23,976	43,175	63,914
10.	. $B_3T + 3S_2T$	$2S_3T_2 + 3B$	339,2	341,326	344,7
11.	$2B_3T_2+S_3T_2$	$B_2T + 3ST$	-617,250	-648,079	-683,479
12.	$2BT + S_3T_2$	$B_2T + 3ST$	-162,758	-156,547	-149,969
13.	$2BT_2 + 3S_3T_2$	$B_2T + 9ST$	-518,906	-2592,023	-2557,31
14.	$2BT_4 + 7S_3T_2$	$B_2T + 21ST$	-1203,18	-1122,77	-1039,68
15.	$2S_3T + B_3T$	$3 B + 3S_2 T$	-436,021	-562,541	-701,176
16.	$3S_2T + 3B_2T$	$2B_3 + 2S_3T_2$	15841,08	15898,9	15963,7

 $SrO\ -\ BaO\ -\ TiO_2$: $SrTiO_3$ – Ba_2TiO_4 ;

 $Sr_3Ti_2O_7-Ba_2TiO_4;\ Sr_2TiO_4-BaO;\ Sr_2TiO_4-Ba_2TiO_4$

16 (

. 3).

•

,

,

,

1, 2, 4,

_

 $Sr_{3}TiO_{5}-BaO;\ SrTiO_{3}-Ba_{3}Ti_{2}O_{7};\ SrTiO_{3}-BaTiO_{3};$, $Si_3 IIO_5 - BaC$ SrTiO₃ - BaTi₂O₅; SrTiO₃ - BaTi₄O₉,

_

•

	: 1.				. –	. – .: «	к –
». 1965. – 546 . 2	•	., .					
: ,	1985. – 136 . 3. <i>B</i>	arany R., Kin	g E.G., To	ood S.S. He	eat of formation	of cryst	alline
silicates of strontium	and barium // J. Am	er. Chem. So	c. – 1957.	– Vol. 79.	– P. 3639 – 364	41. 4.	-
			:		, 1970. – 541	. 5.	.,
		. – .:	, 1981. –	180 . 6.			-
							•
- : .	, 1962	– 223 . 7.		,	• •,		• •,
, · ,	•••,	• •,					-
		SrO – BaO	- TiO ₂ .	//			
٠٠			". –	:	« ». – 20)06. –	43.
116 - 120. 8.				. –	.: .	,	. IX,
1979. – 574 . 9.	• •,	• •,	-				-
. – .:	, 1986. – 408 .						

07.04.08

_

_

-

666.596 : 66-911.48

,

Results of investigations of water systems for kaolin and clay mixtures used as part of the slurry masses for production of sanitary ceramics are presented. The effect of intensification of the dilution process and

,