УДК 666.76

И.А. ОСТАПЕНКО, аспирант; Я.Н. ПИТАК, докт. техн. наук;

О ГЕОМЕТРО-ТОПОЛОГИЧЕСКОЙ ХАРАКТЕРИСТИКЕ ФАЗ СИСТЕМЫ CaO – MgO – FeO – SiO₂

В роботі наведені результати досліджень субсолідусної будови системи CaO – MgO – FeO – SiO₂. В системі встановлено 12 внутрішніх конод. Система розбивається на 33 елементарних тетраедра, для яких розраховані відносні об'єми та ступінь асиметрії. Наведена геометро-топологічна характеристика фаз системи.

In work the results of research of $CaO - MgO - FeO - SiO_2$ system subsoliduse structure have been given. In system 12 internal connodes have been established. The system is broken up on 33 elementary tetrahedrons, for which comparative volumes and degree of asymmetry have been calculated. The geometro-topological characteristic of system phases has been given.

Система CaO – MgO – FeO – SiO₂ имеет существенное прикладное значение при разработке технологии различных видов тугоплавких неметаллических материалов, особенно при рассмотрении вопросов службы огнеупоров в металлургических агрегатах и изучении фазового состава металлургических шлаков [1 – 8]. Система включает огнеупорные соединения (MgO, CaO, SiO₂, Mg₂SiO₄, Mg₂SiO₄, Ca₂SiO₄) и соединения входящие в состав металлургических шлаков (Ca₃Si₂O₇, Ca₃MgSi₂O₈, Ca₂SiO₄, CaMgSiO₄, FeO, Fe₂SiO₄ и др.).

Полное разбиение системы впервые было представлено в монографии А.С. Бережного «Многокомпонентные системы окислов» (1970 г.) [1]. Для проведения разбиения автором сделан ряд допущений – принято сосуществование следующих пар фаз: CaFeSi₂O₆ – Ca₂MgSi₂O₇, CaFeSiO₄ – Ca₃MgSi₂O₈, FeO – Ca₂SiO₄, FeO – Ca₂SiO₄, FeO – CaMgSiO₄, FeO – Mg₂SiO₄. В работе также не учтено новое соединение Ca₇Mg(SiO₄)₄ (фаза «T»), которое было обнаружено позже [4]. Триангуляция системы CaO – MgO – SiO₂ с учетом этой фазы представлена в работах [2, 3].

Целью работы явилось установление геометро-топологических характеристик фаз системы с учетом новых данных по сосуществованию фаз и строению системы. Одним из важнейших геометрических показателей элементарного тетраэдра является его относительный объем, который рассчитывается путем решения определителя по формуле (1):

$$V_{i} = \begin{vmatrix} X_{1} & Y_{1} & Z_{1} & 1 \\ X_{2} & Y_{2} & Z_{2} & 1 \\ X_{3} & Y_{3} & Z_{3} & 1 \\ X_{4} & Y_{4} & Z_{4} & 1 \end{vmatrix},$$
(1)

где X_i , Y_i , Z_i , T_i – содержание оксидов CaO, MgO, FeO, SiO₂ в соединениях, составляющих элементарный тетраэдр.

Степень асимметрии элементарных тетраэдров оценивалась, как отношение максимальной (L_{max}) длины ребра к минимальной (L_{min}) по формуле (2): К = L_{max} / L_{min} .

К геометро-топологическим характеристикам фаз системы относятся следующие показатели: в скольких тетраэдрах присутствует данная фаза, со сколькими фазами сосуществует, объем существования ($\sum V_i$, суммарный объем всех элементарных тетраэдров, в которых присутствует данная фаза), вероятность существования (ω).

Вероятность существования фаз в рассматриваемом концентрационном тетраэдре рассчитывается по формуле (3):

$$\omega_{i} = \frac{\sum V_{i}}{n \cdot V_{0}},\tag{3}$$

где $\sum V_i$ – суммарный объем элементарных тетраэдров, в которых находится данная фаза, V_0 – объем концентрационного тетраэдра, n – число компонентов в системе, в нашем случае n = 4.

Термодинамический анализ реакций в системе позволил установить следующие сосуществующие пары фаз (конноды проходящие в трехмерном пространстве): $Ca_7Mg(SiO_4)_4$ – FeO; $Ca_3MgSi_2O_8$ – FeO; $CaMgSiO_4$ – FeO; Fe₂SiO₄ – CaMgSiO₄; Fe₂SiO₄ – CaMgSi₂O₆; Fe₂SiO₄ – Ca₂MgSi₂O₇; FeSiO₃ – CaMgSi₂O₆; Ca₇Mg(SiO₄)₄ – Ca₂FeSi₂O₇; Ca₇Mg(SiO₄)₄ – CaFeSiO₄; Ca₃MgSi₂O₈ – Ca₂FeSi₂O₇; Ca₂MgSi₂O₆ – CaFeSi₂O₆. Установлено также, что комбинация фаз $Fe_2SiO_4 - Ca_2MgSi_2O_7 - CaMgSi_2O_6$ образует "заполненный контур", а $Ca_7Mg(SiO_4)_4 - Ca_2MgSi_2O_7 - CaFeSiO_4$ образует "пустой контур", пронизанный коннодой $Ca_3MgSi_2O_8 - Ca_2FeSi_2O_7$ [10].

Таким образом система разбивается на 33 элементарных тетраэдра (табл. 1).

Таблица 1

N⁰	Элементарные тетраэдры	Объем Vi, ‰	Степень асимметрии, К	
1	2	3	4	
1	$C - M - C_3S - F$	263,1		
2	$C_3S - C_2S - M - F$	85,7	11,7	
3	$C_2S-C_7MS_4-M-F$	29,1	15,5	
4	$C_7MS_4-C_3MS_2-M-F$	30,5	14,8	
5	$C_3MS_2 - CMS - M - F$	65,5	6,9	
6	$CMS - M_2S - M - F$	153,0	3,0	
7	$C_2S - C_3S_2 - C_7MS_4 - C_2FS_2$	1,0	4,4	
8	$C_3S_2 - C_7MS_4 - C_2MS_2 - C_2FS_2$	2,4	3,9	
9	$C_3S_2-CS-C_2MS_2-C_2FS_2$	3,5	2,2	
10	$CS - CMS_2 - S - CFS_2$	26,0	2,3	
11	$CMS_2 - MS - S - FS$	56,6	2,3	
12	$CMS_2 - MS - M_2S - F_2S$	31,3	3,8	
13	$C_2S - CFS - F - C_7MS_4$	6,2	13,7	
14	$C_2S-C_2FS_2-CFS-C_7MS_4$	1,5	5,7	
15	$CFS_2 - FS - F_2S - CMS_2$	6,8	3,6	
16	$CFS_2 - FS - S - CMS_2$	22,9	2,3	
17	$C_3MS_2 - C_2FS_2 - C_7MS_4 - C_2MS_2$	1,1	3,4	
18	$CMS_2 - MS - FS - F_2S$	16,7	3,8	
19	$CMS-CMS_2-M_2S-F_2S$	40,2	4,4	
20	$CMS - M_2S - F_2S - F$	60,5	2,9	
21	$CMS - CFS - F_2S - F$	22,7	2,8	
22	$CMS - CFS - C_3MS_2 - F$	14,0	5,8	
23	$CMS - CFS - C_3MS_2 - C_2MS_2$	3,7	3,7	
24	$C_7MS_4 - CFS - C_3MS_2 - F$	6,5	12,7	
25	$C_3MS_2-C_2FS_2-C_7MS_4-CFS$	1,5	5,1	
26	$CFS_2 - CS - C_2MS_2 - C_2FS_2$	4,1	2,2	
27	$CFS_2 - CS - C_2MS_2 - CMS_2$	5,7	2,1	
28	$F_2S-C_2MS_2-C_2FS_2-CFS$	3,1	4,7	

Характеристика элементарных тетраэдров системы CaO – MgO – FeO – SiO₂

Продолжение табл. 1.

1	2	3	4
29	$F_2S - C_2MS_2 - CMS - CFS$	6,0	6,3
30	$F_2S - C_2MS_2 - CMS - CMS_2$	10,4	6,3
31	$F_2S - C_2MS_2 - C_2FS_2 - CFS_2$	7,0	4,8
32	$F_2S - C_2MS_2 - CMS_2 - CFS_2$	9,8	4,3
33	$C_3MS_2 - C_2FS_2 - C_2MS_2 - CFS$	1,9	3,6
	Суммарный объем	1000.0	_

Геометро-топологическая характеристика фаз системы CaO – MgO – FeO – SiO₂ приведена в табл. 2.

Таблица 2

		В скольких	Со сколькими	Объем	Вероятность
№	Фаза	тетраэдрах	фазами	существования	существования,
		присутствует	сосуществует	$\sum V_i$, ‰	ω
1	CaO	1	3	263,1	0,0658
2	MgO	6	8	626,9	0,1567
3	FeO	11	10	736,9	0,1842
4	SiO ₂	3	5	105,6	0,0264
5	Ca ₃ SiO ₅	2	4	348,8	0,0872
6	Ca ₂ SiO ₄	5	7	123,4	0,0308
7	$Ca_3Si_2O_7$	3	5	6,9	0,0017
8	CaSiO ₃	4	6	39,4	0,0098
9	Mg ₂ SiO ₄	4	6	285,1	0,0713
10	MgSiO ₃	3	5	104,6	0,0262
11	Fe ₂ SiO ₄	11	10	214,3	0,0536
12	FeSiO ₃	4	5	103,0	0,0257
13	Ca7MgSi4O16	9	8	79,7	0,0199
14	Ca ₃ MgSi ₂ O ₈	8	7	124,7	0,0312
15	CaMgSiO ₄	9	8	376,0	0,0940
16	Ca ₂ MgSi ₂ O ₇	12	10	58,6	0,0147
17	CaMgSi ₂ O ₆	10	9	226,4	0,0566
18	Ca ₂ FeSi ₂ O ₇	10	9	27,0	0,0068
19	CaFeSiO ₄	10	8	67,1	0,0168
20	CaFeSi ₂ O ₆	7	7	82,3	0,0206

Геометро-топологическая характеристика фаз системы CaO – MgO – FeO – SiO₂

Из табл. 2 видно, что наибольшей вероятностью существования в дан-

ной системе обладают фазы: FeO (0,1842), MgO (0,1567), CaMgSiO₄ (0,0940), Ca₃SiO₅ (0,0872), Mg₂SiO₄ (0,0713), CaO (0,0658). Эти же фазы образуют элементарные тетраэдры с наибольшим относительным объемом: $C - M - C_3S - F$ (263,1‰), CMS $- M_2S - M - F$ (153,0‰). Учитывая также и низкую степень асимметрии этих тетраэдров - 3,8 и 3,0 (рисунок) соответственно композиции на основе составов этих тетраэдров являются наиболее технологичными в рассматриваемой системе.

Рисунок. Развертка элементарных тетраэдров CaO – MgO – FeO – Ca₃SiO₅ (a) и Ca₇MgSi₄O₁₆ – Ca₂SiO₄ – CaFeSiO₄ – FeO (б) системы CaO – MgO – FeO – SiO₂

Уточнено строение системы CaO – MgO – FeO – SiO₂. В системе установлено 33 элементарных тетраэдра. Система имеет 12 внутренних коннод, проходящих в трехмерном пространстве. Установлена взаимосвязь элементарных тетраэдров, которая осуществляется при помощи 48 ребер (трехкомпонентных сечений).

Установлено, что наибольшей вероятностью существования в системе CaO – MgO – FeO – SiO₂ обладают фазы: FeO (0,1842), MgO (0,1567), CaMgSiO₄ (0,0940), Ca₃SiO₅ (0,0872), Mg₂SiO₄ (0,0713), CaO (0,0658). Показано, что наиболее технологичными в рассматриваемой системе являются композиции на основе элементарных тетраэдров C – M – C₃S – F (263,1 ‰), CMS – M₂S – M – F (153,0 ‰).

В дальнейшем, на основе полученных даных о строении системы, представляет интерес моделирование изменения фазового состава в композициях периклазовый огнеупор – шлак, форстеритовый огнеупор – шлак, что позволит приблизится к объяснению причин разрушения огнеупоров в службе при изменении соотношения компонентов и температуры их взаимодействия.

Результаты исследований по строению четырехкомпонентной системы CaO – MgO – FeO – SiO₂ послужат теоретической основой для дальнейших разработок в области создания новых технологий тугоплавких неметаллических материалов.

Список литературы: 1. Бережной А.С. Многокомпонентные системы окислов. – К.: Наукова думка, 1970. – 544 с. 2. Бережной А.С. Многокомпонентные щелочные оксидные системы. – К.: Наукова думка, 1988. – 196 с. 3. Физико-химические системы тугоплавких, неметаллических и силикатных материалов; А.С. Бережной, Я.Н. Питак, А.Д. Пономаренко, Н.П. Соболь. – К.: УМК ВО, 1992. – 172 c. 4. Saalfeld H. Kristallographische Untersuchungen die Verbindugen Ca₇MgSi₄O₁₆ (Phase T) in System Ca₂SiO₄ - Ca₃Mg(SiO₄)₂. // Ber. Dtsch. keram. Ges. - 1974. - 51, № 10. - S. 295 - 298. 5. Питак Я.Н., Шабанова Г.Н., Тараненкова В.В. Расчетные методы построения диаграмм эвтектических систем с применением ЗВМ // Компьютер: наука, техника, технология, здоровье: Междунар. науч.-техн. конф. – Харьков – Мишкольц, 1993. – С. 142 – 143. 6. Лисачук Г.В., Питак Я.Н., Питак О.Я. О строении некоторых областей системы CaO – Al₂O₃ – SiO₂ – B₂O₃ // Збірник наукових праць ВАТ "УкрНДІВогнетривів ім. А.С.Бережного". – Харків: Каравела, 2003. – С. 139 – 145. 7. Термодинамика силикатов; Бабушкин В.И., Матвеев Г.М., Мчедлов-Петросян О.П. – М.: Стройиздат, 1986. – 408 с. 8. Питак Я.Н., Чурилова Ю.В. Субсолидусное строение системы Al₂O₃ - SiO₂ - MgO - P₂O₅. // Стекло и керамика - 2003. - № 5. - С. 27 - 29. 9. Питак Я.Н., Питак О.Я., Остапенко И.А. О строении системы CaO – MgO – ZnO – Al₂O₃ // Збірник наукових праць ВАТ "УкрНДІВ ім. А.С. Бережного". – Харків: Каравела, 2007. С. 39 – 45. 10. Могила Л.Г., Остапенко И.А., Питак О.Я., Питак Я.Н. Термодинамический аналіз реакцій в системі CaO – MgO – FeO – SiO₂ // Збірка тез доповідей ІІ Всеукраїнської конференції студентів, аспірантів і молодих учених «Хімічні проблеми сьогодення». - Донецьк: ДонНУ, 2008. - С. 67.

Поступила в редколегію 13.10.08