тод. вказ. до викон. лаб. роботи з дисц. "ФХТНСМ" для студ. спец. 091606 / [О.Ю. Федоренко, Я.М. Пітак, Л.В. Руденко, Ю.В. Чурілова]. – Харків: НТУ "ХПІ", 2006. – 20 с.

Поступила в редколегію 01.06.09

УДК 666.762.11:666.762.8

Л.А. АНГОЛЕНКО, канд. техн. наук, *Г.Д. СЕМЧЕНКО*, докт. техн. наук, НТУ «ХПИ», *В.В. ПОВШУК*, «Укрспецогнеупор», Запорожье, *С.В. ТИЩЕНКО, Е.Е. СТАРОЛАТ, М.А. КУЩЕНКО*, НТУ «ХПИ»

ТЕРМОДИНАМИЧЕСКИЕ РАСЧЕТЫ РЕАКЦИЙ С УЧАСТИЕМ ГАЗОВОЙ ФАЗЫ В СИСТЕМЕ Si – Al₂O₃ – C

Показано доцільність розробок складів вогнетривких мас на основі композиції Si – Al₂O₃ –C з погляду можливості синтезу в них при експлуатації вогнетривких сполук глиноземистої шпінелі, оксикарбідів та карбіду алюмінію, а також карбіду кремнію, що модифікують матеріал.

Prospects of development of refractory masses' charges on the basis of a composition $Si - Al_2O_3 - C$ has been shown from the point of view of synthesis in them at work of refractory compounds such as alumina spinel, aluminium oxicarbides and carbide, and also silicon carbide that modify material.

Материалы систем $Al_2O_3 - C$ и $Al_2O_3 - SiC - C$ давно зарекомендовали себя как наиболее эффективные для изделий, применяемых в металлургическом комплексе [1 – 8]. В последнее время интерес к данным материалам обусловлен интенсивным развитием направления в огнеупорном производстве по созданию различных неформованных огнеупоров [9 – 11]. При этом большое внимание уделяется проблеме защиты углерода от окисления, которая в большинстве случаев решается за счет введения антиоксидантных добавок [12 – 17], наиболее эффективным из которых является кремний.

Фазовые превращения в системе $Al_2O_3 - C$ в большинстве работ [18 – 20] описываются последовательностью: $Al_2O_3 \rightarrow Al_3O_4 \rightarrow Al_4O_4C \rightarrow Al_2OC \rightarrow Al_4C_3$. На начальной стадии взаимодействия преимущественно образуются газообразные Al_2O и CO. Состав и давление газовой фазы существенно влияют на направление фазообразовательных процессов и решающую роль играет

СО. Большая скорость подъема температуры приводит к резкому газовыделению. Возникающий высокий градиент давления обусловливает удаление газообразных продуктов, а именно СО, из зоны гетерогенных химических реакций твердое тело – газ, в результате чего взаимодействие Al_2O_3 с углеродом протекает без участия СО. Основным продуктом твердофазных реакций является глиноземистая шпинель Al_3O_4 . После образования шпинельной фазы синтезируется монооксикарбид алюминия, который при продолжительной термообработке улетучивается. Образование Al_2OC до синтеза Al_4O_4C объясняется тем, что молекула Al_2OC соразмерна с молекулой Al_2O_3 и для ее формирования требуются меньшие энергетичекие затраты, чем для образования Al_4O_4C . Основными же продуктами в системе $Al_2O_3 - C$ являются Al_4C_3 и Al_4O_4C , образующиеся при взаимодействии Al_2O с углеродом и CO_2 :

$$Al_2O + 5C \rightarrow Al_4C_3 + 2CO; \tag{1}$$

$$2 \operatorname{Al}_2 O + \operatorname{CO}_2 \to \operatorname{Al}_4 O_4 C. \tag{2}$$

В процессе последующего взаимодействия Al_4C_3 с Al_4O_4C или Al_2O_3 образуется монооксикарбид алюминия:

$$Al_4C_3 + Al_4O_4C \rightarrow 4Al_2OC; \tag{3}$$

$$Al_4C_3 + Al_2O_3 \rightarrow 3Al_2OC.$$
 (4)

Механизм действия антиоксидантной добавки кремния может быть определен при рассмотрении фазовых превращений в системе Si – O – C [21– 23]. Основными конденсированными фазами в этой системе являются Si, C, SiO₂, SiC. При восстановлении SiO₂ углеродом синтез фаз осуществляется через образование паров монооксида кремния SiO согласно схеме:

$$\operatorname{SiO}_{2} \xrightarrow{\operatorname{CO}} \operatorname{SiO}_{\operatorname{Juccon}} \operatorname{SiO}_{\operatorname{Juccon}} \operatorname{SiO}_{\operatorname{Juccon}} \operatorname{SiO}_{\operatorname{SiO}} \operatorname{SiC} \xrightarrow{\operatorname{SiO}_{2,\operatorname{SiO}}} \operatorname{SiO}_{\operatorname{2000-2100K}} \operatorname{Si} \operatorname{SiO}_{\operatorname{Bunne2100K}} \operatorname{SiO}$$
(5)

Указанные процессы важны при рассмотрении фазообразования в системе Si – Al_2O_3 – C с участием газовых фаз CO и CO₂, где основными конденсированными продуктами приняты SiO₂, SiC, оксикарбиды Al_2OC , Al_4O_4C и карбид алюминия Al_4C_3 .

Согласно общей теории термодинамического равновесия [24], при лю-

бых превращениях параметров состояния термодинамической системы, если независимыми переменными являются энтропия, объем и число молей компонентов, справедливо соотношение для полного дифференциала полной энергии:

$$dU = TdS - pdV + \sum_{i=1}^{k} (\partial U / \partial n_i)_{S,V,n_i} dn_i$$
(6)

Величина производной $(\partial U/\partial n_i)_{S,V,n_i}$ была названа Гиббсом химическим потенциалом i-того компонента, его можно считать обобщенной силой или фактором интенсивности, определяющим процесс перераспределения числа молей компонентов в системе. Химичекий потенциал прирераспределении масс компонентов играет ту же роль, что и давление при изменениии объема и температура в процессе теплообмена. Уравнение химического потенциала идеального газа имеет вид:

$$\mu^{0}(T, P) = \mu^{0^{*}}(T) + RT \ln P$$
(7)

где $\mu^{0^*}(T)$ – постоянная интегрирования, величина которой зависит от физико-химической природы газа и температуры.

Для проведения термодинамических расчетов использовали данные [25 – 29], которые представлены в табл. 1.

Таблица 1

1		1	
Формула вещества	ΔН° _{298,15} , кДж/моль	S° _{298,15} , Дж/моль-град	С° _{р 298,15} , кДж/моль-град
С (графит) [25]	0	5,74	8,536
СО _(г) [25]	-110,530	197,548	29,141
СО _{2 (г)} [25]	-393,510	213,674	_
Si [25]	0	18,84	_
SiO ₂ [25]	-906,585	41,87	_
SiC [26]	-71,90	16,622	_
α-Al ₂ O _{3 (тв)} [27]	-1675,700	50,92	79,033
Al ₃ O ₄ [28]	-2145,042	59,5	_
Al ₄ C _{3 (тв)} [26, 29]	-207,94	88,95	116,78
Al ₄ O ₄ C (TB) [28]	-2249,826	186,2	_
Al ₂ OC (тв) [28]	-665,515	26,9	_

Термические константы веществ системы Si – Al – O – C

В условиях нашего эксперимента, обжиг материалов осуществляли в восстановительной среде при температуре 1723 К, поэтому как газофазный компонент принимали СО и СО₂, а расчет энергии Гиббса осуществляли при постоянной температуре 1723 К и варьировании парциального давления P_{CO/CO_2} . В табл. 2 и 3 приведены по 31 реакции, протекающие в системах Si – Al₂O₃ – CO и Si – Al₂O₃ – CO₂, для которых установлена функциональная зависимость энергии Гиббса от температуры.

Таблица 2

	Энергия I иооса для реакции в системе $SI - AI_2O_3 - CO$						
№	Реакция	$\Delta {G^\circ}_{T}$, кДж/моль					
1	2	3					
1	$Si + 2CO \rightarrow SiO_2 + 2C$	- 685,525 + 0,360586·T					
2	$3Si + 2CO \rightarrow SiO_2 + 2SiC$	-829,325 + 0,376502·T					
3	$Si + 3Al_2O_3 + CO \rightarrow 2Al_3O_4 + SiO_2 + C$	-59,039 + 0,202538·T					
4	$3Si + 4Al_2O_3 + 2CO \rightarrow 2Al_4O_4C + 3SiO_2$	-295,547 + 0,157286·T					
5	$3Si + 2Al_2O_3 + 2CO \rightarrow 2Al_2OC + 3SiO_2$	-478,325 + 0,374046·T					
6	$5\mathrm{Si} + 2\mathrm{Al}_2\mathrm{O}_3 + 4\mathrm{CO} \rightarrow \mathrm{Al}_4\mathrm{C}_3 + 5\mathrm{SiO}_2 + \mathrm{C}$	-947,345 + 0,682192·T					
7	$3Si + 3Al_2O_3 + 2CO \rightarrow Al_4O_4C + Al_2OC + 3SiO_2$	-386,936 + 0,265666·T					
8	$4Si + 7Al_2O_3 + 3CO \rightarrow 2Al_3O_4 + 2Al_4O_4C + 4SiO_2 + C$	-354,586 + 0,359824·T					
9	$4Si + 5Al_2O_3 + 3CO \rightarrow 2Al_3O_4 + 2Al_2OC + 4SiO_2 + C$	-537,364 + 0,576584·T					
10	$7\mathrm{Si} + 9\mathrm{Al}_2\mathrm{O}_3 + 5\mathrm{CO} \rightarrow 2\mathrm{Al}_3\mathrm{O}_4 + 2\mathrm{Al}_4\mathrm{O}_4\mathrm{C} + 2\mathrm{Al}_2\mathrm{OC} + 7\mathrm{SiO}_2 +$	-832,911 + 0,73387·T					
	C						
11	$6\mathrm{Si} + 5\mathrm{Al}_2\mathrm{O}_3 + 5\mathrm{CO} \rightarrow \mathrm{Al}_4\mathrm{C}_3 + 2\mathrm{Al}_3\mathrm{O}_4 + 6\mathrm{SiO}_2 + 2\mathrm{C}$	-1006,384 + 0,88473·T					
12	$8\mathrm{Si} + 6\mathrm{Al}_2\mathrm{O}_3 + 6\mathrm{CO} \rightarrow \mathrm{Al}_4\mathrm{C}_3 + 2\mathrm{Al}_4\mathrm{O}_4\mathrm{C} + 8\mathrm{SiO}_2 + \mathrm{C}$	-1242,892 + 0,839478·T					
13	$8Si + 4Al_2O_3 + 6CO \rightarrow Al_4C_3 + 2Al_2OC + 8SiO_2 + C$	−1425,67 + 1,056238·T					
14	$8Si + 5Al_2O_3 + 6CO \rightarrow Al_4C_3 + Al_4O_4C + Al_2OC + 8SiO_2 + C$	-1334,281 + 0,947858·T					
15	$9Si + 9Al_2O_3 + 7CO \rightarrow Al_4C_3 + 2Al_3O_4 + 2Al_4O_4C + 9SiO_2 +$	-1301,931 + 1,042016·T					
	2C						
16	$9Si + 7Al_2O_3 + 7CO \rightarrow Al_4C_3 + 2Al_3O_4 + 2Al_2OC + 9SiO_2 +$	-1484,709 + 1,258776·T					
	2C						
17	$12\mathrm{Si} + 11\mathrm{Al}_2\mathrm{O}_3 + 9\mathrm{CO} \rightarrow \mathrm{Al}_4\mathrm{C}_3 + 2\mathrm{Al}_3\mathrm{O}_4 + 2\mathrm{Al}_4\mathrm{O}_4\mathrm{C} + 2\mathrm{Al}_2\mathrm{OC}$	-1780,256 + 1,416062·T					
	$+ 12SiO_2 + 2C$						
18	$4Si + 3Al_2O_3 + 3CO \rightarrow 2Al_3O_4 + 2SiO_2 + 2SiC + C$	-888,364 + 0,57904·T					
19	$5Si + 4Al_2O_3 + 4CO \rightarrow 2Al_4O_4C + 4SiO_2 + SiC + C$	−1052,972 + 0,52583·T					
20	$3Si + Al_2O_3 + 3CO \rightarrow Al_2OC + 2SiO_2 + SiC + C$	−543,295 + 0,567082·T					
21	$7\mathrm{Si} + 2\mathrm{Al}_2\mathrm{O}_3 + 6\mathrm{CO} \rightarrow \mathrm{Al}_4\mathrm{C}_3 + 6\mathrm{SiO}_2 + \mathrm{SiC} + 2\mathrm{C}$	−1703,73 + 1,050736·T					
22	$5Si + 3Al_2O_3 + 4CO \rightarrow Al_4O_4C + Al_2OC + 4SiO_2 + SiC + C$	-1144,361 + 0,63421·T					
23	$7Si + 7Al_2O_3 + \overline{5CO} \rightarrow 2Al_3O_4 + 2Al_4O_4C + 5SiO_2 + 2SiC + C$	-1183,911 + 0,736326·T					
24	$7Si + 5Al_2O_3 + \overline{5CO} \rightarrow 2Al_3O_4 + 2Al_2OC + 5SiO_2 + 2SiC + C$	-1366,689 + 0,953086 · T					

Энергия Гиббса для реакций в системе Si – Al₂O₃ – CO

продолжение табл. 2

1	2	3
25	$7\mathrm{Si} + 6\mathrm{Al}_2\mathrm{O}_3 + 5\mathrm{CO} \rightarrow 2\mathrm{Al}_3\mathrm{O}_4 + \mathrm{Al}_4\mathrm{O}_4\mathrm{C} + \mathrm{Al}_2\mathrm{OC} + 5\mathrm{SiO}_2 +$	-1275,3 + 0,844706·T
	2SiC + C	
26	$9Si + 5Al_2O_3 + 7CO \rightarrow Al_4C_3 + 2Al_3O_4 + 7SiO_2 + 2SiC + 2C$	-1835,709 + 1,261232·T
27	$11\mathrm{Si} + 6\mathrm{Al}_2\mathrm{O}_3 + 8\mathrm{CO} \rightarrow \mathrm{Al}_4\mathrm{C}_3 + 2\mathrm{Al}_4\mathrm{O}_4\mathrm{C} + 9\mathrm{SiO}_2 + 2\mathrm{SiC} + \mathrm{C}$	-2072,217 + 1,21598·T
28	$8Si + 3Al_2O_3 + 6CO \rightarrow Al_4C_3 + Al_2OC + 7SiO_2 + SiC + C$	−1601,17 + 1,057466·T
29	$11\mathrm{Si} + 5\mathrm{Al}_2\mathrm{O}_3 + 8\mathrm{CO} \rightarrow \mathrm{Al}_4\mathrm{C}_3 + \mathrm{Al}_4\mathrm{O}_4\mathrm{C} + \mathrm{Al}_2\mathrm{OC} + 9\mathrm{SiO}_2 +$	-2163,606 + 1,32436·T
	2SiC + C	
30	$12Si + 9Al_2O_3 + 9CO \rightarrow Al_4C_3 + 2Al_3O_4 + 2Al_4O_4C + 10SiO_2 +$	-2131,256 + 1,418518·T
	2SiC + 2C	
31	$12\mathrm{Si} + 7\mathrm{Al}_2\mathrm{O}_3 + 9\mathrm{CO} \rightarrow \mathrm{Al}_4\mathrm{C}_3 + 2\mathrm{Al}_3\mathrm{O}_4 + 2\mathrm{Al}_2\mathrm{OC} + 10\mathrm{SiO}_2 +$	-2314,034 + 1,635278·T
	2SiC + 2C	
32	$12\mathrm{Si} + 8\mathrm{Al}_2\mathrm{O}_3 + 9\mathrm{CO} \rightarrow \mathrm{Al}_4\mathrm{C}_3 + 2\mathrm{Al}_3\mathrm{O}_4 + \mathrm{Al}_4\mathrm{O}_4\mathrm{C} + \mathrm{Al}_2\mathrm{OC} +$	-2222,645 + 1,526898·T
	10SiO ₂ + 2SiC + 2C	
33	$5Si + 3Al_2O_3 + 3CO \rightarrow 2Al_3O_4 + 2SiO_2 + 3SiC$	-960,264 + 0,586998·T
34	$3Si + 2Al_2O_3 + 2CO \rightarrow Al_4O_4C + 2SiO_2 + SiC$	-1124,872 + 0,533788·T
35	$3Si + Al_2O_3 + 2CO \rightarrow Al_2OC + 2SiO_2 + SiC$	-653,825 + 0,375274·T
36	$6\mathrm{Si} + 3\mathrm{Al}_2\mathrm{O}_3 + 4\mathrm{CO} \rightarrow \mathrm{Al}_4\mathrm{O}_4\mathrm{C} + \mathrm{Al}_2\mathrm{OC} + 4\mathrm{SiO}_2 + 2\mathrm{SiC}$	-1216,261 + 0,642168·T
37	$8Si + 7Al_2O_3 + 5CO \rightarrow 2Al_3O_4 + 2Al_4O_4C + 5SiO_2 + 3SiC$	-1255,811 + 0,744284·T
38	$8Si + 5Al_2O_3 + 5CO \rightarrow 2Al_3O_4 + 2Al_2OC + 5SiO_2 + 3SiC$	-1438,589 + 0,961044·T
39	$8Si + 6Al_2O_3 + 5CO \rightarrow 2Al_3O_4 + Al_4O_4C + Al_2OC + 5SiO_2 +$	-1347,2 + 0,852664·T
	3SiC	
40	$10\mathrm{Si} + 5\mathrm{Al}_2\mathrm{O}_3 + 7\mathrm{CO} \rightarrow \mathrm{Al}_4\mathrm{C}_3 + 2\mathrm{Al}_3\mathrm{O}_4 + 7\mathrm{SiO}_2 + 3\mathrm{SiC}$	−1906,569 + 1,27493·T
41	$12Si + 6Al_2O_3 + 8CO \rightarrow Al_4C_3 + 2Al_4O_4C + 9SiO_2 + 3SiC$	-2143,077 + 1,223938·T
42	$9Si + 3Al_2O_3 + 6CO \rightarrow Al_4C_3 + Al_2OC + 7SiO_2 + 2SiC$	-1672,03 + 1,065424·T
43	$12Si + 5Al_2O_3 + 8CO \rightarrow Al_4C_3 + Al_4O_4C + Al_2OC + 9SiO_2 +$	-2234,466 + 1,332318·T
	3SiC	
44	$14Si + 9Al_2O_3 + 9CO \rightarrow Al_4C_3 + 2Al_3O_4 + 2Al_4O_4C + 10SiO_2 +$	-2274,016 + 1,434434·T
	4SiC	
45	$14Si + 7Al_2O_3 + 9CO \rightarrow Al_4C_3 + 2Al_3O_4 + 2Al_2OC + 10SiO_2 +$	-2456,794 + 1,651194·T
	4SiC	
46	$14Si + 8Al_2O_3 + 9CO \rightarrow Al_4C_3 + 2Al_3O_4 + Al_4O_4C + Al_2OC +$	-2365,405 +
	$10\mathrm{SiO}_2 + 4\mathrm{SiC}$	1,542814·T47

На основе полученных уравнений с учетом уравнения (7) были построены графики зависимости энергии Гиббса от парциального давления газового компонента (СО или СО₂) при температуре 1723 К: для реакций (1) – (17) и (18) – (31), протекающих в системе Si – Al₂O₃ – CO, приведены на рис. 1, для реакций (1) – (17) и (18) – (31), протекающих в системе Si – Al₂O₃ – CO₂, приведены на рис. 2.

Таблица 3

Энергия Гиббса для реакций в системе $Si - Al_2O_3 - CO_2$

№	Реакция	$\Delta { m G^{o}}_{ m T}$, кДж/моль
1	2	3
1	$Si + 2CO_2 \rightarrow SiO_2 + C$	−119,565 + 0,398578·T
2	$2Si + CO_2 \rightarrow SiO_2 + SiC$	-584,975 + 0,192862·T
3	$2Si + 6Al_2O_3 + CO_2 \rightarrow 4Al_3O_4 + 2SiO_2 + C$	54,372 + 0,229394·T
4	$2Si + 2Al_2O_3 + CO_2 \rightarrow Al_4O_4C + 2SiO_2$	-318,086 + 0,083254·T
5	$2Si + Al_2O_3 + CO_2 \rightarrow Al_2OC + 2SiO_2$	-409,475 + 0,191634·T
6	$6\mathrm{Si} + 2\mathrm{Al}_2\mathrm{O}_3 + 3\mathrm{CO}_2 \rightarrow \mathrm{Al}_4\mathrm{C}_3 + 6\mathrm{SiO}_2$	-1115,52 + 0,515732·T
7	$4Si + 3Al_2O_3 + 2CO_2 \rightarrow Al_4O_4C + Al_2OC + 4SiO_2$	-727,561 + 0,274888∙T
8	$4Si + 8Al_2O_3 + 2CO_2 \rightarrow 4Al_3O_4 + Al_4O_4C + 4SiO_2 + C$	-263,714 + 0,312648·T
9	$4Si + 7Al_2O_3 + 2CO_2 \rightarrow 4Al_3O_4 + Al_2OC + 4SiO_2 + C$	−355,103 + 0,421028·T
10	$6\mathrm{Si} + 9\mathrm{Al}_2\mathrm{O}_3 + 3\mathrm{CO}_2 \rightarrow 4\mathrm{Al}_3\mathrm{O}_4 + \mathrm{Al}_4\mathrm{O}_4\mathrm{C} + \mathrm{Al}_2\mathrm{OC} + 6\mathrm{SiO}_2 + \mathrm{C}$	-673,189 + 0,504282·T
11	$8Si + 8Al_2O_3 + 4CO_2 \rightarrow Al_4C_3 + 4Al_3O_4 + 8SiO_2 + C$	-1061,148 + 0,745126·T
12	$8Si + 4Al_2O_3 + 4CO_2 \rightarrow Al_4C_3 + Al_4O_4C + 8SiO_2$	-1433,606 + 0,598986·T
13	$8Si + 3Al_2O_3 + 4CO_2 \rightarrow Al_4C_3 + Al_2OC + 8SiO_2$	-1524,995 + 0,707366·T
14	$10Si + 5Al_2O_3 + 5CO_2 \rightarrow Al_4C_3 + Al_4O_4C + Al_2OC + 10SiO_2$	-1843,081 + 0,79062·T
15	$10\mathrm{Si} + 10\mathrm{Al}_2\mathrm{O}_3 + 5\mathrm{CO}_2 \rightarrow \mathrm{Al}_4\mathrm{C}_3 + 4\mathrm{Al}_3\mathrm{O}_4 + \mathrm{Al}_4\mathrm{O}_4\mathrm{C} + 10\mathrm{SiO}_2$	-1379,234 + 0,82838·T
	+ C	
16	$10Si + 9Al_2O_3 + 5CO_2 \rightarrow Al_4C_3 + 4Al_3O_4 + Al_2OC + 10SiO_2 +$	−1470,623 + 0,93676·T
	C	
17	$12\mathrm{Si} + 11\mathrm{Al}_2\mathrm{O}_3 + 6\mathrm{CO}_2 \rightarrow \mathrm{Al}_4\mathrm{C}_3 + 4\mathrm{Al}_3\mathrm{O}_4 + \mathrm{Al}_4\mathrm{O}_4\mathrm{C} + \mathrm{Al}_2\mathrm{O}\mathrm{C}$	-1788,709 + 1,020014·T
	$+ 12SiO_2 + C$	
18	$4Si + 6Al_2O_3 + 2CO_2 \rightarrow 4Al_3O_4 + 3SiO_2 + SiC + C$	-530,603 + 0,422256·T
19	$6Si + 2Al_2O_3 + 4CO_2 \rightarrow Al_4O_4C + 5SiO_2 + SiC + 2C$	-1929,211 + 0,645924·T
20	$5\mathrm{Si} + \mathrm{Al}_2\mathrm{O}_3 + 3\mathrm{CO}_2 \rightarrow \mathrm{Al}_2\mathrm{OC} + 4\mathrm{SiO}_2 + \mathrm{SiC} + \mathrm{C}$	-1507,525 + 0,5694·T
21	$9Si + 2Al_2O_3 + 5CO_2 \rightarrow Al_4C_3 + 8SiO_2 + SiC + C$	-2212,53 + 0,893498·T
22	$11\mathrm{Si} + 3\mathrm{Al}_2\mathrm{O}_3 + 7\mathrm{CO}_2 \rightarrow \mathrm{Al}_4\mathrm{O}_4\mathrm{C} + \mathrm{Al}_2\mathrm{O}\mathrm{C} + 9\mathrm{SiO}_2 + 2\mathrm{SiC} + 3\mathrm{C}$	-3436,736 + 1,215324·T
23	$10\mathrm{Si} + 8\mathrm{Al}_2\mathrm{O}_3 + 6\mathrm{CO}_2 \rightarrow 4\mathrm{Al}_3\mathrm{O}_4 + \mathrm{Al}_4\mathrm{O}_4\mathrm{C} + 8\mathrm{SiO}_2 + 2\mathrm{SiC} +$	-2459,814 + 1,06818·T
	3C	
24	$9Si + 7Al_2O_3 + 5CO_2 \rightarrow 4Al_3O_4 + Al_2OC + 7SiO_2 + 2SiC + 2C$	-2038,128 + 0,991656·T
25	$15Si + 9Al_2O_3 + 9CO_2 \rightarrow 4Al_3O_4 + Al_4O_4C + Al_2OC + 12SiO_2 +$	-3967,339 + 1,63758·T
	3SiC + 4C	
26	$13\mathrm{Si} + 8\mathrm{Al}_2\mathrm{O}_3 + 7\mathrm{CO}_2 \rightarrow \mathrm{Al}_4\mathrm{C}_3 + 4\mathrm{Al}_3\mathrm{O}_4 + 11\mathrm{SiO}_2 + 2\mathrm{SiC} +$	-2743,133 + 1,315754·T
	2C	
27	$15\mathrm{Si} + 4\mathrm{Al}_2\mathrm{O}_3 + 9\mathrm{CO}_2 \rightarrow \mathrm{Al}_4\mathrm{C}_3 + \mathrm{Al}_4\mathrm{O}_4\mathrm{C} + 13\mathrm{SiO}_2 + 2\mathrm{SiC} +$	-4141,741 + 1,539422·T
	3C	
28	$14\text{Si} + 3\text{Al}_2\text{O}_3 + 8\text{CO}_2 \rightarrow \text{Al}_4\text{C}_3 + \text{Al}_2\text{OC} + 12\text{SiO}_2 + 2\text{SiC} + 2\text{C}$	-3720,055 + 1,462898·T
29	$20\mathrm{Si} + 5\mathrm{Al}_2\mathrm{O}_3 + 12\mathrm{CO}_2 \rightarrow \mathrm{Al}_4\mathrm{C}_3 + \mathrm{Al}_4\mathrm{O}_4\mathrm{C} + \mathrm{Al}_2\mathrm{O}\mathrm{C} + 17\mathrm{SiO}_2 +$	-5649,266 + 2,108822·T
	3SiC + 4C	

продолжение табл. 3

1	2	3
30	$19\mathrm{Si} + 10\mathrm{Al}_2\mathrm{O}_3 + 11\mathrm{CO}_2 \rightarrow \mathrm{Al}_4\mathrm{C}_3 + 4\mathrm{Al}_3\mathrm{O}_4 + \mathrm{Al}_4\mathrm{O}_4\mathrm{C} + 16\mathrm{SiO}_2$	-4672,344 + 1,961678·T
	+ 3SiC + 4C	
31	$18Si + 9Al_2O_3 + 10CO_2 \rightarrow Al_4C_3 + 4Al_3O_4 + Al_2OC + 15SiO_2 +$	-4250,658 + 1,885154·T
	3SiC + 3C	
32	$24\mathrm{Si} + 11\mathrm{Al}_2\mathrm{O}_3 + 14\mathrm{CO}_2 \rightarrow \mathrm{Al}_4\mathrm{C}_3 + 4\mathrm{Al}_3\mathrm{O}_4 + \mathrm{Al}_4\mathrm{O}_4\mathrm{C} + \mathrm{Al}_2\mathrm{O}\mathrm{C}$	-6179,869 + 2,531078·T
	+ 20SiO ₂ $+ 4$ SiC $+ 5$ C	
33	$3Si + 6Al_2O_3 + CO_2 \rightarrow 4Al_3O_4 + 2SiO_2 + SiC$	-17,528 + 0,237352·T
34	$4Si + 2Al_2O_3 + 2CO_2 \rightarrow Al_4O_4C + 3SiO_2 + SiC$	-903,061 + 0,276116·T
35	$4Si + Al_2O_3 + 2CO_2 \rightarrow Al_2OC + 3SiO_2 + SiC$	-994,45 + 0,384496·T
36	$8Si + 2Al_2O_3 + 4CO_2 \rightarrow Al_4C_3 + 7SiO_2 + SiC$	-1699,455 + 0,708594·T
37	$6\mathrm{Si} + 3\mathrm{Al}_2\mathrm{O}_3 + 3\mathrm{CO}_2 \rightarrow \mathrm{Al}_4\mathrm{O}_4\mathrm{C} + \mathrm{Al}_2\mathrm{O}\mathrm{C} + 5\mathrm{Si}\mathrm{O}_2 + \mathrm{Si}\mathrm{C}$	−1312,536 + 0,46775·T
38	$5\mathrm{Si} + 8\mathrm{Al}_2\mathrm{O}_3 + 2\mathrm{CO}_2 \rightarrow 4\mathrm{Al}_3\mathrm{O}_4 + \mathrm{Al}_4\mathrm{O}_4\mathrm{C} + 4\mathrm{SiO}_2 + \mathrm{SiC}$	-335,614 + 0,320606·T
39	$5\mathrm{Si} + 7\mathrm{Al}_2\mathrm{O}_3 + 2\mathrm{CO}_2 \rightarrow 4\mathrm{Al}_3\mathrm{O}_4 + \mathrm{Al}_2\mathrm{OC} + 4\mathrm{SiO}_2 + \mathrm{SiC}$	-427,003 + 0,428986·T
40	$7\mathrm{Si} + 9\mathrm{Al}_2\mathrm{O}_3 + 3\mathrm{CO}_2 \rightarrow 4\mathrm{Al}_3\mathrm{O}_4 + \mathrm{Al}_4\mathrm{O}_4\mathrm{C} + \mathrm{Al}_2\mathrm{OC} + 6\mathrm{SiO}_2 +$	-745,089 + 0,51224·T
	SiC	
41	$9Si + 8Al_2O_3 + 4CO_2 \rightarrow Al_4C_3 + 4Al_3O_4 + 8SiO_2 + SiC$	-1133,048 + 0,753084·T
42	$10\mathrm{Si} + 4\mathrm{Al}_2\mathrm{O}_3 + 5\mathrm{CO}_2 \longrightarrow \mathrm{Al}_4\mathrm{C}_3 + \mathrm{Al}_4\mathrm{O}_4\mathrm{C} + 9\mathrm{SiO}_2 + \mathrm{SiC}$	-2018,581 + 0,791848·T
43	$10\mathrm{Si} + 3\mathrm{Al}_2\mathrm{O}_3 + 5\mathrm{CO}_2 \rightarrow \mathrm{Al}_4\mathrm{C}_3 + \mathrm{Al}_2\mathrm{OC} + 9\mathrm{SiO}_2 + \mathrm{SiC}$	-2109,97 + 0,900228·T
44	$12\mathrm{Si} + 5\mathrm{Al}_2\mathrm{O}_3 + 6\mathrm{CO}_2 \longrightarrow \mathrm{Al}_4\mathrm{C}_3 + \mathrm{Al}_4\mathrm{O}_4\mathrm{C} + \mathrm{Al}_2\mathrm{OC} + 11\mathrm{SiO}_2 +$	-2428,056 + 0,983482·T
	SiC	
45	$11\mathrm{Si} + 10\mathrm{Al}_2\mathrm{O}_3 + 5\mathrm{CO}_2 \rightarrow \mathrm{Al}_4\mathrm{C}_3 + 4\mathrm{Al}_3\mathrm{O}_4 + \mathrm{Al}_4\mathrm{O}_4\mathrm{C} + 10\mathrm{SiO}_2$	-1451,134 + 0,836338·T
	+ SiC	
46	$11\mathrm{Si} + 9\mathrm{Al}_2\mathrm{O}_3 + 5\mathrm{CO}_2 \longrightarrow \mathrm{Al}_4\mathrm{C}_3 + 4\mathrm{Al}_3\mathrm{O}_4 + \mathrm{Al}_2\mathrm{OC} + 10\mathrm{SiO}_2 + 10\mathrm{SiO}$	-1542,523 + 0,944718·T
	SiC	
47	$13\text{Si} + 11\text{Al}_2\text{O}_3 + 6\text{CO}_2 \rightarrow \text{Al}_4\text{C}_3 + 4\text{Al}_3\text{O}_4 + \text{Al}_4\overline{\text{O}_4\text{C}} + \text{Al}_2\text{OC} +$	-1860,609 + 1,027972·T
	$12SiO_2 + SiC$	

В интервале температур 0 – 1800 К в системе Si – $Al_2O_3 – CO – CO_2$ теоретически возможен синтез фаз SiO₂, SiC, оксикарбидов Al_4O_4C и Al_2OC , а также Al_4C_3 по указанным в табл. 2 и табл. 3 реакциям с участием газовой фазы.

Анализ графических зависимостей энергии Гиббса от парциального давления CO показывает, что при значениях давления P_{CO} в диапазоне от 10^{-30} до 1 ат невозможно протекание реакций (3), (5) – (18), (22), (23), (34) – (46).

Осуществление реакций (1), (2), (4), (19), (22), (23), (34) – (36) в системе Si – Al₂O₃ – CO, согласно термодинамическим расчетам, происходят при парциальных давлениях $P_{CO} = 10^{-3} - 1$ ат.

Рис. 1. Зависимость энергии Гиббса $\Delta G_{P,T}$ от парциального давления P_{CO} реакций: a - (1-17); 6 - (18-32); в - (33-46)

Рис. 2. Зависимость энергии Гиббса $\Delta G_{P,T}$ от парциального давления $\,P_{CO_2}\,$ реакций:

a – (1*–17*); б – (18*–32*); в – (33*–47*)

Наиболее вероятной является реакция (34) с образованием оксикарбида алюминия Al₄O₄C, диоксида SiO₂ и карбида кремния SiC.

В системе Si – Al₂O₃ – CO₂ при температуре 1723 К термодинамически подтверждается протекание реакций (2), (4) – (7), (12) – (14), (19) – (32), (34) – (37), (42) – (45) при значениях парциального давления $P_{CO_2} \approx 10^{-4} - 1$ ат.

Наиболее вероятной является реакция (29) с образованием оксикарбидов алюминия Al_4O_4C и Al_2OC , диоксида SiO_2 и карбида кремния SiC, а также сажистого углерода. Причем реакции с образованием сажистого углерода имеют преимущество по сравнению с аналогичными реакциями, где весь монооксид углерода CO связывается в карбид кремния.

Таким образом, термодинамически обосновано вероятность протекания реакций синтеза глиноземистой шпинели Al_3O_4 , оксикарбидов Al_4O_4C , Al_2OC и карбида алюминия Al_4C_3 , а также диоксида SiO_2 и карбида кремния SiC с отложением сажистого углерода в системе $Si - Al_2O_3 - CO - CO_2$ при температуре 1723 К. Установлено, что преимущественными являются реакции с образованием тетраоксикарбида алюминия Al_4O_4C и карбида кремния SiC.

Используя стандартный изобарный потенциал реакции или стандартную свободную энергию реакции [30] при условии, что все парциальные давления всех участников реакции в исходной неравновесной смеси равны единице ($P_i = 1$), рассчитывали константу равновесия реакции для всех приведенных выше реакций, которая приведена в табл. 4 и табл. 5.

Таблица 4

No	Константа скорости реакции		No	Константа скорости реакции	
	$\ln K_{\rm p} = f({\rm T})$	Г) К _{р 1723}		$\ln K_{\rm p} = f({\rm T})$	К _{р 1723}
1	2	3	4	5	6
1	82,4543/T - 0,0434	1,0045	24	164,3841/T - 0,1146	0,9810
2	99,7504/T - 0,0453	1,0127	25	153,3919/T - 0,1016	0,9875
3	7,1012/T - 0,0244	0,9800	26	220,7973/T - 0,1517	0,9767
4	35,5481/T - 0,0189	1,0017	27	249,2443/T - 0,1463	0,9984
5	57,5325/T - 0,045	0,9885	28	192,5872/T – 0,1272	0,9847
6	113,9458/T - 0,0821	0,9842	29	260,2365/T - 0,1593	0,9996
7	46,5403/T - 0,032	0,9951	30	256,3454/T - 0,1706	0,9784
8	42,6493/T - 0,0433	0,9816	31	278,3298/T - 0,1967	0,9655
9	64,6336/T - 0,0694	0,9687	32	267,3376/T - 0,1837	0,9719
10	100,1817/T - 0,0883	0,9703	33	115,4996/T - 0,0706	0,9964
11	121,0469/T - 0,1064	0,9645	34	135,2985/T - 0,0642	1,0144

Константа равновесия реакций в системе Si – Al₂O₃ – C – CO

продолжение табл. 4

1	2	3	4	5	6
12	149,4939/T - 0,101	0,9859	35	78,6414/T - 0,0451	1,0005
13	171,4782/T - 0,127	0,9859	36	146,2907/T - 0,0772	1,0077
14	160,486/T – 0,114	0,9794	37	151,0478/T - 0,0895	0,9981
15	156,595/T - 0,1253	0,9661	38	173,0321/T - 0,1156	0,9849
16	178,5794/T – 0,1514	0,9534	39	162,0399/T - 0,1026	0,9915
17	214,1275/T - 0,1703	0,9550	40	229,3203 /T - 0,1533	0,9799
18	106,8516/T - 0,0696	0,9924	41	257,7673/T - 0,1472	1,0024
19	126,6505/T - 0,0632	1,0103	42	201,1102/T - 0,1281	0,9886
20	65,347/T – 0,0682	0,9702	43	268,7594/T - 0,1602	0,9957
21	204,923/T - 0,1264	0,9926	44	273,5165/T - 0,1725	0,9863
22	137,6427/T - 0,0763	1,0036	45	295,5008/T - 0,1986	0,9733
23	146,2907/T - 0,0772	1,0077	46	284,5087/T - 0,1856	0,9798

Таблица 5

Константа	равновесия реакций	і в системе	si –	Al_2O_2	$-C-CO_2$
Ronerunna	public beenn peakinn		, DI	1 H ₂ O 3	$C CO_2$

No	Константа скорости реакции		No	Константа скорости реакции	
	$\ln K_{p} = f(T)$	К _{р 1723}		$\ln K_{p} = f(T)$	K _{p 1723}
1	14,3812/T - 0,0479	0,9612	25	477,1878/T – 0,197	1,0833
2	70,3602/T - 0,0232	1,0178	26	329,9414/T - 0,1583	1,0338
3	6,5398/T + 0,0276	0,9691	27	498,1647/T - 0,1852	1,1096
4	38,2591/T - 0,01	1,0123	28	447,4447/T - 0,176	1,0873
5	49,2513/T - 0,023	1,0056	29	679,4883/T - 0,2536	1,1511
6	134,1737/T - 0,062	1,0160	30	561,9851/T - 0,2359	1,0944
7	87,5103/T - 0,0331	1,0179	31	511,2651/T - 0,2267	1,0725
8	31,7193/T - 0,0376	0,9810	32	743,3088/T - 0,3044	1,1354
9	42,7115/T - 0,0506	0,9745	33	2,1083/T - 0,0285	0,9730
10	80,9705/T - 0,0607	0,9864	34	108,6193/T - 0,0332	1,0303
11	127,6339/T - 0,0896	0,9846	35	119,6115/T - 0,0462	1,0234
12	172,4328/T - 0,072	1,0284	36	204,4088/T - 0,0852	1,0340
13	183,4249/T - 0,0851	1,0216	37	157,8706/T - 0,0563	1,0360
14	221,684/T-0,0951	1,0341	38	40,3673/T - 0,0386	0,9850
15	165,893/T - 0,0996	0,9967	39	51,3595/T - 0,0516	0,9784
16	176,8851/T - 0,1127	0,9900	40	89,6186/T - 0,0616	0,9904
17	215,1442/T - 0,1227	1,0022	41	136,2819/T - 0,0906	0,9886
18	63,8204/T - 0,0508	0,9863	42	242,793/T - 0,0952	1,0467
19	232,0437/T - 0,0777	1,0586	43	253,7852/T - 0,1083	1,0398
20	181,3237/T - 0,0685	1,0374	44	292,0443/T - 0,1183	1,0525
21	266,121/T - 0,1075	1,0481	45	174,541/T - 0,1006	1,0007
22	413,3673/T - 0,1462	1,0983	46	185,5332/T - 0,1136	0,9941
23	295,8641/T - 0,1285	1,0442	47	223,7923/T - 0,1236	1,0063
24	245,1441/T - 0,1193	1,0233			

Увеличение константы равновесия реакции свидетельствует о смещении направления реакции в сторону образования продуктов. Наиболее вероятными, согласно значениям K_p , в системе Si – Al₂O₃ – C – CO являются реакции (1), (2), (19), (34), а в системе Si – Al₂O₃ – C – CO₂ – реакции (27*), (29*), (32*).

Список литературы: 1. Семченко Г.Д. Технология корундографитовых огнеупоров на комбинированном связующем / Г.Д. Семченко // Огнеупоры. – 1984. – № 11. – С. 30 – 33. 2. Семченко Г.Д. Стойкие корундографитовые материалы для металлургии / Г.Д. Семченко // Новые огнеупоры. - 2002. - № 6. - С. 35 - 37. 3. Сенников С.Г. Состояние российской металлургии и огнеупорной промышленности на рубеже третьего тысячелетия / С.Г. Сенников, С.Н. Фокин // Огнеупоры и техническая керамика. – 2000. – № 1. – С. 1 – 4. 4. Очагова И.Г. Огнеупоры для чугуновозных ковшей миксерного типа / И.Г. Очагова // Огнеупоры. – 1988. – № 2. – С. 59 – 62. 5. Очагова И.Г. Тенденции развития мировой огнеупорной промышленности / И.Г. Очагова // Новые огнеупоры. – 2004. – № 4. – С. 8 – 10. 6. Очагова И.Г. Тенденции развития мировой огнеупорной промышленности / И.Г. Очагова // Новые огнеупоры. – 2004. – № 6. – С. 81 – 83. 7. Очагова И.Г. Направления развития огнеупорной промышленности / И.Г. Очагова // Новые огнеупоры. – 2005. – № 7. - С. 79 - 81. 8. Очагова И.Г. Новейшие тенденции в технологии огнеупоров для кислородных конвертеров в Японии / И.Г. Очагова // Новости черной металлургии за рубежом. – 2005. – № 3. - С. 73 - 76. 9. Очагова И.Г. Механизм износа и пути совершенствования огнеупорных бетонов для промежуточных ковшей МНЛЗ (опыт японских огнеупорных и металлургических компаний) / И.Г. Очагова // Новости черной металлургии за рубежом: (приложение «Огнеупорное производство»). – 2003. – 44 с. 10. Борзов Д.Н. Разработка низкоцементных бетонов системы $Al_2O_3 - SiC - C / C$ Д.Н. Борзов // Огнеупоры и техническая керамика. – 2002. – № 4. – С. 30 – 34. 11. Пат 5932506 США, МПК⁶ С 04 В 35/103, 35/567. Огнеупорный бетон состава оксид алюминия – карбид кремния – углерод, содержащий алюмомагниевую шпинель. Alumina – silicon carbide – carbon refractory castable containing magnesium aluminate spinel: Пат 5932506 США, МПК⁶ С 04 В 35/103, 35/567. / Водап J.E. – № 09/028265; Заявл. 23.02.1998; Опубл. 03.08.1999. – 4 с. **12.** Пирогов Ю.А. Разработка состава комбинированного антиоксиданта для периклазографитовой набивной массы / Ю.А. Пирогов, Л.Н. Солошенко // Огнеупоры. – 1991. – № 1. – С. 11 – 13. 13. Очагова И.Г. Влияние антиоксидантов на свойства периклазоуглеродистых огнеупорных изделий / И.Г. Очагова // Новости черной металлургии за рубежом. – 1997. – № 2. – С. 146 – 152. 14. Кривокорытов Е.В. Влияние антиоксидантов на свойства безобжиговых углеродсодержащих огнеупоров / Кривокорытов Е.В. // Огнеупоры и техническая керамика. – 1999. – № 12. – С. 6 – 10. 15. Аксельрод Л.М. Изготовление периклазоуглеродистых огнеупоров с антиоксидантом и испытание их в футеровке 370-т конвертера / Л.М. Аксельрод // Огнеупоры и техническая керамика. – 1999. – № 5. – С. 45 – 48. 16. Бамбуров В.Г. Антиоксиданты в углеродсодержащих огнеупорах / В.Г. Бамбуров // Огнеупоры и техническая керамика. – 2000. – № 2. – С. 2 – 5. 17. Пат. 2147565 Россия, МПК⁷ С 04 В 35/035. Способ изготовления антиоксиданта: Пат. 2147565 Россия, МПК⁷ С 04 В 35/035. / В.А. Можжерин, В.Я. Саккулин, В.П. Мигаль, А.Н. Новиков, Г.Н. Салагина, Б.П. Александров, Л.М. Аксельрод, *Е.А. Штерн*; заявитель и патентообладатель ОАО «Боровичский комбинат огнеупоров». - № 98118179/03; Заявл. 02.10.1998; Опубл. 20.04.2000. - 4 с. 18. Голдин Б.А. Высокотемпературная восстановительная переработка оксидного минерального сырья (маложелезистые бокситы и лейкоксен) / [Б.А. Голдин, Ю.И. Рябков, П.В. Истомин, В.Э. Грасс]. – Екатеринбург: УрО РАН. - 2001. - 216 с. 19. Грасс В.Э. Синтез монооксикарбида алюминия / В.Э. Грасс, Ю.И. Рябков,

П.А. Ситников // Тез. докл. Всерос. конф. «Химия твердого тела и функциональные материалы». - Екатеринбург. - 2000. - С. 111. 20. Рябков Ю.И. Процессы восстановления оксида алюминия в системе Al₂O₃ – С при низких давлениях / Ю.И. Рябков, Т.Л. Леканова, Т.М. Споршева // Журнал физической химии. – 2001. – Т. 75, № 8. – С. 21 – 25. 21. Рябчиков И.В. К механизму восстановления кремнезема углеродом / И.В. Рябчиков // Изв. АН СССР. – Металлы. – 1966. – № 4. – С. 38. 22. Толстогузов Н.В. О механизме восстановления кремния / Н.В. Толстогузов // Изв. вузов. Черн. металлургия. – 1992. – № 2. – С. 89 – 92. 23. Кожевников Г.Н. О взаимодействии моноокиси кремния с углеродом / Г.Н. Кожевников, А.Г. Водопьянов, Г.И. Чуфаров // Изв. АН СССР. – Металлы. - 1972. - № 4. - С. 82 - 85. 24. Глазов В.М. Химическая термодинамика и фазовые равновесия / В.М. Глазов, Л.М. Павлова. – [2-е изд., перераб. и доп.]. – М.: Металлургия, 1988. – 560 с. 25. Термические константы веществ: справочник в 10 выпусках / под ред. акад. В.П. Глушко. – М.: ВИНИТИ, 1970. – Выпуск IV (С, Si, Ge, Sn, Pb). – Ч. 1: Таблицы принятых значений. – 510 с. 26. Свойства, получение и применение тугоплавких соединений: справ. изд. / Под ред. Т.Я. Косолаповой. – М.: Металлургия, 1986. – 928 с. 27. Термические константы веществ: справочник в 10 выпусках / Под ред. акад. В.П. Глушко. – М.: ВИНИТИ, 1971. – Выпуск V (B, Al, Ga, In, Tl). – 530 с. 28. Апончук А.В. О термодинамических свойствах алюминиевой шпинели и оксикарбидов алюминия / А.В. Апончук, О.М. Катков, И.К. Карпов // Известия вузов. Цветная металлургия. - 1986. - № 6. - С. 50 - 53. **29.** Карлина О.К. Термодинамический анализ и экспериментальное исследование фазовых равновесий при термохимической переработке облученного графита в системе С – Аl – TiO₂ / О.К. Карлина // Атомная энергия. – 2003. – Т. 94, Вып. 6. – С. 457 – 463. 30. Герасимов Я.И. Курс физической химии / [Герасимов Я.И., Древинг В.П., Еремин Е.Н. и др.]. – М.: Госхимиздат, 1963. – Т. 1. – 624 с.

Поступила в редколлегию 12.05.09

УДК 666.943

Г.М. ШАБАНОВА, докт. техн. наук, *Д.Ю. МАРКОВ*, *А.М. КОРОГОДСЬКА*, канд. техн. наук, *О.С. НАБОКА*, *О.О. ГАПОНОВА*, канд. техн. наук, НТУ «ХПІ»

ВИСОКОМІЦНІ ШЛАКОЛУЖНІ В'ЯЖУЧІ МАТЕРІАЛИ, ЗАТВОРЕНІ РІДКИМ СКЛОМ

У статті наведені результати отримання високоміцних в'яжучих матеріалів на основі доменного гранульованого шлаку ВАТ «АМК» та рідкого скла. Досліджено доменний гранульований шлак, розроблено оптимальний склад, визначено його основні фізико-механічні характеристики. Досліджено процеси, що протікають при затворенні в'яжучого матеріалу оптимального складу рідким склом та встановлено основні фази, що при цьому утворюються.

In the article the results of obtaining high durable binding materials are resulted on the basis of blastfurnace granular slag of OC «AMF» and liquid glass. A blast-furnace granular slag is researched, optimum composition is developed, his basic physical and chemical characteristics are defined. Processes are