К₂О від його кількості в руді у вигляді важкорозчинних калійних мінералів. Його можна переробити в безхлоридні гранульовані калійні добрива пролонгованої дії з мікроелементами.

Усе це дає змогу організувати комплексну безвідхідну переробку полімінеральної руди методом сульфатного вилуговування. Цей метод придатний також для утилізації багатотоннажних галіто-лангбейнітових відвалів, що нагромадилися.

Список літератури: 1. Лунькова Ю.Н. Производство концентрированных калийных удобрений из полиминеральных руд / Ю.Н. Лунькова, Н.В. Хабер. – К.: Техника, 1980. – 158 с. 2. А.с. 608762 СССР, МКл С 01 D 5/06. Способ растворения полиминеральной хлоридно-сульфатной калийной руды / О.Д. Лях, Л.В. Писарев, А.П. Рубель (СССР). – № 2033803/23-26; заявл. 17.06.74; опубл. 30.05.78, Бюл. № 20. 3. Иванченко Л.В. Новый способ выщелачивания полиминеральных руд Прикарпатья насыщенным сульфатным раствором / Л.В. Иванченко, О.Д. Лях, Л.Н. Эрайзер // Тр. Одес. Политехн. ун-та. – 1998. – Вып. 1(5). – С. 261 – 263. 4. Ерайзер Л.М. Дослідження процесу переробки полімінеральних руд Прикарпаття на калійні добрива методом сульфатного вилуджування / Л.М. Ерайзер, Л.В. Іванченко // Сучасний університет: перспективи розвитку: міжнар. наук.-практ. конф., 18-21 жовтня 2010 р.: зб. наук. праць. – Черкаси: ЧТІ, 2010. – С. 10 – 14.

Надійшла до редколегії 24.10.11

УДК 621.317

Е.В. СЕМКИНА, инж., НТУ «ХПИ»,

Б.И. БАЙРАЧНЫЙ, докт. техн. наук, проф., НТУ «ХПИ»,

Л.В. ЛЯШОК, канд. техн. наук, проф., НТУ «ХПИ»,

О.В. БОРЗЕНКО, студент, НТУ «ХПИ»

СИНТЕЗ МЕДНЫХ НАНОВОЛОКОН В МАТРИЦЕ ПОРИСТОГО АНОДНОГО ОКСИДА АЛЮМИНИЯ

В статті розглядається процес створення плівок анодного оксиду алюмінію, що має пори с заданими властивостями. Отримані зразки використовують як матрицю для створення композитного матеріалу Al_2O_3 -Cu. Встановлено параметри, що дозволяють синтезувати мідні нановолокна фіксованого розміру з високим ступенем заповнення пор металом.

В статье рассмотрен процесс создания пленок анодного оксида алюминия с заданными свойствами. Сформированные образцы использованы в качестве матрицы для создания композитного материала Al_2O_3 -Cu. Определены параметры, позволяющие синтезировать медные нановолокна определенного размера с высокой степенью заполнения пор металлом. The process of tapes creation of alumina with the preset parameters is considered in the article. The models are used as a matrix for creation of the composite material Al₂O₃-Cu. Parameters allowing synthesizing the copper nanowires of certain size with the high degree of filling of pores by a metal are certain.

В настоящее время проводятся многочисленные исследования, направленные на получение новых материалов со специальными физическими, химическими и др. характеристиками. Переход к наноразмерам приводит к расширению областей применения таких материалов.

Особый интерес представляют медные нановолокна и материалы на их основе, которые возможно применить в микро/наноэлектронике, гетерогенном катализе, органическом синтезе, сенсорных системах и др. отраслях [1].

Эффективность использования наночастиц металлов в большой степени зависит от применяемого метода синтеза. Существует ряд методов, позволяющих получить медные наноструктуры – метод химического или радиационно-химического восстановления из солей, электронная литография, лазерное осаждение, осаждение в вакууме. Наиболее доступным методом является формирование в объеме материала упорядоченных структур (слоев, пор) с дальнейшим их заполнением металлом. Для этой цели широкое распространение получили пленки анодного оксида алюминия (AOA), характеризующиеся высокоупорядоченным расположением гексагональных пор, размещенных перпендикулярно поверхности [2].

Одним из перспективных методов заполнения пористой матрицы является электрохимическое осаждение, отличающееся простотой и невысокой стоимостью реализации. Он позволяет с высокой точностью контролировать количество осажденного металла и обеспечивает высокую полноту и равномерность заполнения пор.

В данной работе пленки АОА синтезировали по методике двухстадийного окисления [3] в растворах 1 М серной кислоты и 0,5 М щавелевой кислоты при температуре 10 °C. Обработке подвергали образцы из алюминиевой фольги (99,99 %) толщиной 30 мкм, катод — свинец, время анодирования (1 — 10) часов. Полученные образцы использовали в качестве матрицы для осаждения меди, которое проводили в растворе состава: CuSO₄ 0,9 M, H₂SO₄ 0,6 M, анод — платина, температура 20 °C, видимая поверхность образцов 1,2 см². Исследование осаждения металла проводили на потенциостате ПИ-50-1, электрод сравнения — хлорсеребряный.

В растворах таких кислот, как серная, ортофосфорная, щавелевая, сульфосалициловая, на поверхности алюминия образуются толстые (до 100 мкм)

пленки с упорядоченной пористой структурой. При создании матрицы Al_2O_3 параметры формирующейся структуры можно варьировать подбором состава и концентрации электролита, параметрами электролиза.

Из литературы [4] известно, что по величине напряжения, реализующегося в процессе анодирования, возможно расчитать характеристики АОА. Параметры полученных пленок приведены в табл. 1.

Электролит	Плотность	Напряжение,	Диаметр	Диаметр	Число пор
	тока, мА/см ²	В	ячейки, нм	пор, нм	на 1 см ²
1M H ₂ SO ₄	10	25	68	23	$81 \cdot 10^9$
0,5M (COOH) ₂	10	60	158	55	$21 \cdot 10^9$

Микрофотографии сформированных матриц Al_2O_3 приведены на рис. 1, геометрические параметры пор и плотность их расположения хорошо согласовались с данными, приведенными в табл. 1.

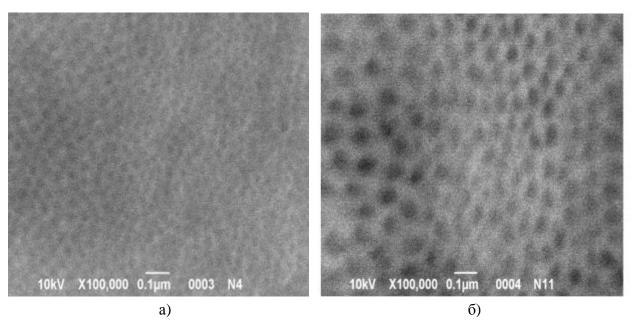


Рис. 1. Микрофотографии пористого AOA, синтезированного в растворах: а) 1 M H_2SO_4 и б) 0,5 M (COOH) $_2$.

Для дальнейших исследований была выбрана матрица, синтезированная в растворе щавелевой кислоты. При анодировании в течение 6 часов толщина пленки составила 15 мкм, а истинная поверхность увеличилась до $5,4\cdot10^2$ см². На следующем этапе исследовали электроосаждение меди в сформирован-

ную матрицу. Важнейшим параметром, оказывающими влияние на кристаллическую структуру и равномерность заполнения пор, является потенциал электрокристаллизаци. С помощью метода циклической вольтамперометри было установлено, что осаждение меди с достаточной скоростью протекает при потенциалах от +0,1 до -0,35 В. Низкое значение перенапряжения должно облегчить заполнение пор металлом. Изучение электрокристаллизации проводили путем анализа потенциостатических зависимостей, полученных при значениях перенапряжения 0,2 В, 0,3 В, 0,4 В (рис. 2).

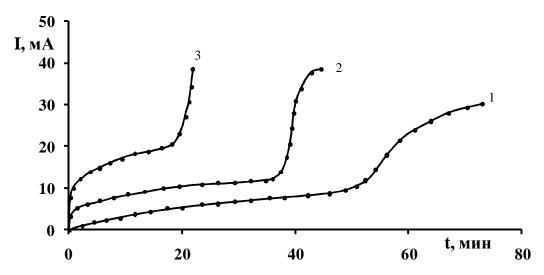


Рис. 2. Хроноамперограммы осаждения меди в матрицу Al_2O_3 при значениях перенапряжения, B: 1) 0,2, 2) 0,3, 3) 0,4.

На полученных зависимостях можно выделить четыре участка, характеризующих стадии роста наночастиц меди. Первый соответствует зародышеобразованию в глубине пор. На втором происходит равномерный рост нитевидных нановолокон по высоте пор, при этом значение тока практически не изменяется, а длина участка зависит от толщины используемой матрицы. На третьем участке происходит резкое увеличение тока, связанное с частичным выходом частиц на поверхность, а на четвертом образуется сплошная металлическая фаза на поверхности матрицы.

В табл. 2 приведены теоретические и экспериментальные значения количества электричества, затраченного на осаждение металла в поры матрицы Al_2O_3 (теоретическое значение рассчитано по закону Фарадея, практическое – по площади под кривой I- τ). Из таблицы видно, что максимальная степень заполнения матрицы происходит при перенапряжении 0.3 В.

Таблица 2 Равномерность заполнения матрицы Al_2O_3 медью

η, Β	Q _{эксп} , мА·ч	$\mathrm{Q}_{\scriptscriptstyle{\mathrm{9KCII}}}/\mathrm{Q}_{\scriptscriptstyle{\mathrm{T}}}\left(\% ight)$	
0,2	6,0	91	
0,3	6,5	98	
0,4	5,8	88	

Таким образом, в работе исследован процесс создания матрицы анодного оксида алюминия с упорядоченной структурой пор, формирование пленки приводит к значительному развитию поверхности. Оптимизированы условия синтеза медных наночастиц в матрице Al_2O_3 , полученной в 0,5 М щавелевой кислоте при напряжении 60 В. Определены условия получения нанокомпозитов, обеспечивающие максимальную степень заполнения пор 98%.

Список литературы: 1. *Ingunta R.* Novel procedure for the template synthesis of metal nanostructures / *R. Ingunta, S. Piazza, S. Sunseri* // Electrochemistry Communication. – 2008. – № 10. – С. 506 – 509. **2.** *Белов А.Н.* Особенности получения наноструктурированного анодного оксида алюминия / *А.Н. Белов, С.А. Гаврилов, В.И. Шевяков* // Российские нанотехнологии. – 2006. – Том 1, № 1 – 2. – С. 223 – 227. **3.** *Masuda H.* Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina / *H. Masuda, K. Fukuda* // Science. – 1995. – Vol. 268. – С. 1466 – 1468. **4.** *Щербаков А.И.* Исследование процесса формирования нанопористого оксида при анодировании алюминия / [*А.И. Щербаков, И.Б. Скворцов, В.И. Золотаревский и др.*] // Физикохимия поверхности и защита металлов. – 2008. – № 1. – С. 71 – 74.

Поступила в редколлегию 13.10.11

УДК 541.138

Л.В. ЛЯШОК, канд. техн. наук, профессор, НТУ "ХПИ",

И.А. АФОНИНА, канд. техн. наук, стаж. препод., НТУ "ХПИ",

А.В. ВАСИЛЬЧЕНКО, канд. техн. наук, доц., НУГЗУ, Харьков,

Т.В. ОРЕХОВА, вед. инженер, НТУ "ХПИ"

ДЕТЕКТИРОВАНИЕ ВОДОРОДА С ИСПОЛЬЗОВАНИЕМ МОДИФИЦИРОВАННОГО ПАн-Pd-ЭЛЕКТРОДА

В статті представлені результати дослідження і показана можливість застосування електрохімічного детектора на основі поліаніліну з іммобілізованими наночастками паладію для газового амперометричного сенсора малих концентрацій водню, який можна використовувати для визначення небезпеки займання.